九年级数学下册专题03 反比例函数与特殊四边形存在性问题(原卷版)(人教版)_第1页
九年级数学下册专题03 反比例函数与特殊四边形存在性问题(原卷版)(人教版)_第2页
九年级数学下册专题03 反比例函数与特殊四边形存在性问题(原卷版)(人教版)_第3页
九年级数学下册专题03 反比例函数与特殊四边形存在性问题(原卷版)(人教版)_第4页
九年级数学下册专题03 反比例函数与特殊四边形存在性问题(原卷版)(人教版)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题03反比例函数与特殊四边形存在性问题类型一、平行四边形形存在性问题例.如图,在中,,,.一次函数交轴于点,交反比例函数于、两点.(1)求一次函数和反比例函数的解析式;(2)求的面积;(3)问:在直角坐标系中,是否存在一点,使以,,,为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.【变式训练1】.如图1,已知,,平行四边形的边、分别与轴、轴交于点、,且点为中点,双曲线为常数,上经过、两点.(1)求的值;(2)如图2,点是轴正半轴上的一个动点,过点作轴的垂线,分别交反比例函数为常数,图像于点,交反比例函数的图像于点,当时,求点坐标;(3)点在双曲线上,点在轴上,若以点、、、为顶点的四边形是平行四边形,试求出满足要求的所有点的坐标.【变式训练2】.如图,在平面直角坐标系中,的直角边在轴上,轴,,,反比例函数的图象经过线段的中点,与交于点.

(1)求点的坐标.(2)求反比例函数的表达式及点的坐标.(3)在坐标平面上是否存在一点,使得以,,,为顶点的四边形是平行四边形,若存在,请直接写出点的坐标;若不存在,诸说明理由.【变式训练3】.如图,在平面直角坐标系中,已知,,已知点、,且点B在第二象限内.(1)求点B的坐标;(2)将以每秒3个单位的速度沿x轴向右运动,设运动时间为t秒,是否存在某一时刻,使B、C的对应点E、F,恰好落在第一象限内的反比例函数的图像上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问:是否存在x轴上的点P和反比例函数图像上的点Q,使得以P、Q、E、F为顶点的四边形为平行四边形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.类型二、菱形存在性问题例.如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,),反比例函数(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求出点D坐标和反比例函数关系式;(2)写出点E的坐标并判断DE与AC的位置关系(说明理由);(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.【变式训练1】.如图1,四边形ABCD为正方形,点A在y轴上,点B在x轴上,且OA=6,OB=3,反比例函数在第一象限的图象经过正方形的顶点C.(1)求点C的坐标和反比例函数的表达式;(2)如图2,将正方形ABCD沿x轴向右平移m个单位长度得到正方形,点恰好落在反比例函数的图象上,求此时点的坐标;(3)在(2)的条件下,点P为x轴上一动点,平面内是否存在点Q,使以点O、、P、Q为顶点的四边形为菱形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.【变式训练2】.如图,在平面直角坐标系中,四边形ABCO为矩形,,,点P从点A出发,以每秒1cm的速度沿AB方向向终点B运动;点Q从点D出发,以每秒2cm的速度沿DC方向向终点C运动,已知动点P、Q同时出发,当点P、Q有一点到达终点时,P、Q都停止运动,设运动时间为t秒.(1)用含t的代数式表示:_______cm,_______cm;(2)函数的图像在第一象限内的一支双曲线经过点P,且与线段BC交于点M,若出△POM的面积为7.5,试求此时t的值:(3)点P、Q在运动过程的中,是否存在某一时刻t,使坐标平面上存在点E,以P、Q、C、E为顶点的四边形刚好是菱形?若存在,请求出所有满足条件的t的值,若不存在,请说明理由.【变式训练4】.综合与探究如图1,反比例函数的图象经过点,点的横坐标是-2,点关于坐标原点的对称点为点,作直线.(1)判断点是否在反比例函数的图象上,并说明理由;(2)如图1,过坐标原点作直线交反比例函数的图象于点和点,点的横坐标是4,顺次连接,,和.求证:四边形是矩形;(3)已知点在轴的正半轴上运动,点在平面内运动,当以点,,和为顶点的四边形为菱形时,请直接写出此时点的坐标.类型三、矩形存在性问题例.如图,已知直线y=x+1与双曲线y=交于A,B两点,且点A的坐标为(a,2).(1)求双曲线的表达式;(2)将直线y=x+1向下平移一个单位长度得直线l,P是y轴上的一个动点,Q是l上的一个动点,求AP+PQ的最小值;(3)若M为y轴上的一个动点,N为平面内一个动点,当以A,B,M,N为顶点的四边形是矩形时,直接写出点N的坐标.【变式训练1】.如图,在直角坐标系中,直线与反比例函数的图像交于、B两点.(1)求反比例函数的表达式;(2)将直线向上平移后与y轴交于点C,与双曲线在第二象限内的部分交于点D,如果的面积为16,求直线向上平移的距离;(3)E是y轴正半轴上的一点,F是平面内任意一点,使以点A,B,E,F为顶点的四边形是矩形,请求出所有符合条件的点E的坐标.【变式训练2】.如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD//BC,BD平分,交AO于点E,交AC于点F,.若OB,OC的长分别是一元二次方程的两个根,且.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.【变式训练3】.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数的图像上,点D的坐标为(4,3),设AB所在直线解析式为.(1)求反比例和一次函数解析式.(2)若将菱形ABCD沿x轴正方向平移m个单位,在平移中若反比例函数图像与菱形的边AD始终有交点,求m的取值范围.(3)在直线AB上是否存在M、N两点,使以MNOD四点的四边形构成矩形?若不存在,请说明理由,若存在直接求出M、N(点M在点N的上方)两点的坐标.类型四、正方形存在性问题例.如图,在平面直角坐标系中,直线与反比例函数的图象交于点,与轴交于点,点是反比例函数的图象上一动点,过点作直线轴交直线于点,设点的横坐标为,且,连接,.(1)求,的值.(2)当的面积为3时,求点的坐标.(3)设的中点为,点为轴上一点,点为坐标平面内一点,当以,,,为顶点的四边形为正方形时,求出点的坐标.【变式训练1】.如图1,在平面直角坐标系中,点,点,直线AB与反比例函数的图象在第一象限相交于点.

(1)求反比例函数的解析式;(2)如图2,点,连接,点E是反比例函数图象第一象限内一点,且点E在点C的右侧,连接,,若的面积与且的面积相等,求点E的坐标;(3)在(2)的条件下,若点M是反比例函数的图象第一象限上的动点,连接,并在左侧作正方形,当顶点F或顶点N恰好落在直线上,直接写出点M的坐标.【变式训练2】.如图,直线分别与反比例函数和的图像交于A,B两点,点B横坐标为2.

(1)求n的值.(2)若点C为图像上一点,过点C作直线轴,交反比例函数于点D,当时,求C点横坐标.(3)若点E在直线AB上,请在坐标平面内找一点F,使得以C,D,E,F四点为顶点的四边形是正方形,并求出点F的坐标.【变式训练3】.如图,在平面直角坐标系中,直线与反比例函数的图象交于点,与y轴交于点,点P是反比例函数的图象上一动点,过点P作直线轴交直线于点Q,设点P的横坐标为t,且,连接(1)求k,b的值.(2)当的面积为3时,求点P的坐标.(3)设的中点为C,点D为x轴上一点,点E为坐标平面内一点,当以B,C,D,E为顶点的四边形为正方形时,求出点P的坐标.【变式训练4】.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,并与反比例函数y=(k≠0)的图象在第一象限相交于点C,且点B是AC的中点.(1)如图1,求反比例函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论