版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A. B. C. D.2.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.3.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π4.以下关于的命题,正确的是A.函数在区间上单调递增B.直线需是函数图象的一条对称轴C.点是函数图象的一个对称中心D.将函数图象向左平移需个单位,可得到的图象5.已知等比数列的前项和为,且满足,则的值是()A. B. C. D.6.已知直线,,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()A.3 B. C. D.8.在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为()A. B. C. D.9.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.10.已知全集为,集合,则()A. B. C. D.11.已知向量,,则向量与的夹角为()A. B. C. D.12.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的二项展开式中,含项的系数为__________.14.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________.15.某四棱锥的三视图如图所示,那么此四棱锥的体积为______.16.函数的值域为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.求椭圆的方程;已知是椭圆的内接三角形,①若点为椭圆的上顶点,原点为的垂心,求线段的长;②若原点为的重心,求原点到直线距离的最小值.18.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:,,,,.②参考公式:相关系数,,.19.(12分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.20.(12分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.21.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.22.(10分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.2、A【解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.3、C【解析】
两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.4、D【解析】
利用辅助角公式化简函数得到,再逐项判断正误得到答案.【详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【点睛】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.5、C【解析】
利用先求出,然后计算出结果.【详解】根据题意,当时,,,故当时,,数列是等比数列,则,故,解得,故选.【点睛】本题主要考查了等比数列前项和的表达形式,只要求出数列中的项即可得到结果,较为基础.6、C【解析】
先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线,,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为C.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.7、C【解析】
根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.8、B【解析】
根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k.再把点代入,求得k的值,可得要求的双曲线的方程.【详解】∵双曲线的渐近线方程为设所求双曲线的标准方程为k.又在双曲线上,则k=16-2=14,即双曲线的方程为∴双曲线的标准方程为故选:B【点睛】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.9、C【解析】
需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题10、D【解析】
对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,再由交集的定义求解即可.【详解】,,.故选:D【点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.11、C【解析】
求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.12、A【解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.14、【解析】
设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.【详解】如图,设双曲线的左焦点为,连接,由于.所以四边形为矩形,故.在中,由双曲线的定义可得,.故答案为:【点睛】本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.15、【解析】
利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【详解】如图:此四棱锥的高为,底面是长为,宽为2的矩形,所以体积.所以本题答案为.【点睛】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断.16、【解析】
利用配方法化简式子,可得,然后根据观察法,可得结果.【详解】函数的定义域为所以函数的值域为故答案为:【点睛】本题考查的是用配方法求函数的值域问题,属基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;①;②.【解析】
根据题意列出方程组求解即可;①由原点为的垂心可得,轴,设,则,,根据求出线段的长;②设中点为,直线与椭圆交于,两点,为的重心,则,设:,,,则,当斜率不存在时,则到直线的距离为1,,由,则,,,得出,根据求解即可.【详解】解:设焦距为,由题意知:,因此,椭圆的方程为:;①由题意知:,故轴,设,则,,,解得:或,,不重合,故,,故;②设中点为,直线与椭圆交于,两点,为的重心,则,当斜率不存在时,则到直线的距离为1;设:,,,则,,则,则:,,代入式子得:,设到直线的距离为,则时,;综上,原点到直线距离的最小值为.【点睛】本题考查椭圆的方程的知识点,结合运用向量,韦达定理和点到直线的距离的知识,属于难题.18、(1)见解析;(2)①②3.386(万元)【解析】
(1)利用代入数值,求出后即可得解;(2)①计算出、后,利用求出后即可得解;②把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,,∴,说明与正相关,且相关性很强.(2)①由已知求得,,所以,所求回归直线方程为.②当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.19、(1);(2)【解析】
(1)根据递推公式,用配凑法构造等比数列,求其通项公式,进而求出的通项公式;(2)求出数列的通项公式,利用错位相减法求数列的前项和.【详解】解:(1),,是首项为,公比为的等比数列.所以,.(2).【点睛】本题考查了由数列的递推公式求通项公式,错位相减法求数列的前n项和的问题,属于中档题.20、【解析】
将直线的极坐标方程和曲线的参数方程分别化为直角坐标方程,联立直角坐标方程求出交点坐标,结合的取值范围进行取舍即可.【详解】因为直线的极坐标方程为,所以直线的普通方程为,又因为曲线的参数方程为(为参数),所以曲线的直角坐标方程为,联立方程,解得或,因为,所以舍去,故点的直角坐标为.【点睛】本题考查极坐标方程、参数方程与直角坐标方程的互化;考查运算求解能力;熟练掌握极坐标方程、参数方程与直角坐标方程的互化公式是求解本题的关键;属于中档题、常考题型.21、(1)见解析;(2).【解析】
(1)先证明,可证平面,再由可证平面,即得证;(2)以为坐标原点,建立如图所示空间直角坐标系,设,求解面的法向量,面的法向量,利用二面角的余弦值为,可求解,转化即得解.【详解】(1)证明:因为是正三角形,为线段的中点,所以.因为是菱形,所以.因为,所以是正三角形,所以,所以平面.又,所以平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简单随机抽样课件好
- 家纺导购专业知识培训课件
- 酒店物业管理服务合同三篇
- 社团活动对学生发展的影响计划
- 秋季学期学生学习成果展示计划
- 促肝细胞生长素相关项目投资计划书
- 前台文员的个人发展规划计划
- 销售心理学与客户洞察培训
- 张紧装置相关项目投资计划书范本
- 输尿管癌的护理查房
- JB T 7588-2010YL系列双值电容单相异步电动机技术条件(机座号80~132)
- 抵制不健康读物“读书与人生”
- 大型展览会场消防应急演示
- 2024年中广核新能源深圳有限公司招聘笔试参考题库含答案解析
- 2024年徐州地铁集团有限公司招聘笔试参考题库含答案解析
- 《机电一体化设备安装与调试》课程标准
- 拉运污水泄漏应急预案
- 幼儿园大班社会《年的故事》
- 马术比赛应急处置预案
- 基于核心素养的初中道德与法治大单元与议题式教学融合策略 论文
- 土壤检测报告
评论
0/150
提交评论