2025届甘肃省临夏回族自治州临夏中学高一数学第二学期期末复习检测模拟试题含解析_第1页
2025届甘肃省临夏回族自治州临夏中学高一数学第二学期期末复习检测模拟试题含解析_第2页
2025届甘肃省临夏回族自治州临夏中学高一数学第二学期期末复习检测模拟试题含解析_第3页
2025届甘肃省临夏回族自治州临夏中学高一数学第二学期期末复习检测模拟试题含解析_第4页
2025届甘肃省临夏回族自治州临夏中学高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省临夏回族自治州临夏中学高一数学第二学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用表示不超过的最大整数(如,).数列满足,若,则的所有可能值的个数为()A.1 B.2 C.3 D.42.在中,角、、所对的边分别为、、,如果,则的形状是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形3.设向量,且,则实数的值为()A. B. C. D.4.已知函数f(x)=sin(ωx+φ)(其中ω>0,﹣π<φ<π),若该函数在区间()上有最大值而无最小值,且满足f()+f()=0,则实数φ的取值范围是()A.(,) B.(,) C.(,) D.(,)5.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π6.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.7.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.8.已知集合A=-1,A.-1,  0,  19.在△中,若,则△为()A.等腰三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形10.直线(是参数)被圆截得的弦长等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,半径为,则扇形的面积.12.用数学归纳法证明“”,在验证成立时,等号左边的式子是______.13.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限.14.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=515.按照如图所示的程序框图,若输入的x值依次为,0,1,运行后,输出的y值依次为,,,则________.16.在上,满足的的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,,,等比数列中,,.(1)求数列,的通项公式;(2)若,求数列的前n项和.18.在等差数列中,,其前项和为,等比数列的各项均为正数,,且,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求()的最大值与最小值.19.已知单调递减数列的前项和为,,且,则_____.20.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.21.在中,内角的对边分别为,且.(1)求角;(2)若,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

数列取倒数,利用累加法得到通项公式,再判断的所有可能值.【详解】两边取倒数:利用累加法:为递增数列.计算:,整数部分为0,整数部分为1,整数部分为2的所有可能值的个数为0,1,2答案选C【点睛】本题考查了累加法求数列和,综合性强,意在考查学生对于新知识的阅读理解能力,解决问题的能力,和计算能力.2、C【解析】

结合正弦定理和三角恒等变换及三角函数的诱导公式化简即可求得结果【详解】利用正弦定理得,化简得,即,则或,解得或故的形状是等腰三角形或直角三角形故选:C【点睛】本题考查根据正弦定理和三角恒等变化,三角函数的诱导公式化简求值,属于中档题3、D【解析】

根据向量垂直时数量积为0,列方程求出m的值.【详解】向量,(m+1,﹣m),当⊥时,•0,即﹣(m+1)﹣2m=0,解得m.故选D.【点睛】本题考查了平面向量的数量积的坐标运算,考查了向量垂直的条件转化,是基础题.4、D【解析】

根据题意可画图分析确定的周期,再列出在区间端点满足的关系式求解即可.【详解】由题该函数在区间()上有最大值而无最小值可画出简图,又,故周期满足.故.故.又,故.故选:D【点睛】本题主要考查了正弦型函数图像的综合运用,需要根据题意列出端点处的函数对应的表达式求解.属于中等题型.5、B【解析】

作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.6、C【解析】

计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.7、C【解析】

由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【点睛】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.8、B【解析】

直接利用交集运算得到答案.【详解】因为A=-1,  故答案选B【点睛】本题考查了交集运算,属于简单题.9、A【解析】

利用正弦定理化简已知条件,得到,由此得到,进而判断出正确选项.【详解】由正弦定理得,所以,所以,故三角形为等腰三角形,故选A.【点睛】本小题主要考查利用正弦定理判断三角形的形状,考查同角三角函数的基本关系式,属于基础题.10、D【解析】

先消参数得直线普通方程,再根据垂径定理得弦长.【详解】直线(是参数),消去参数化为普通方程:.圆心到直线的距离,∴直线被圆截得的弦长.故选D.【点睛】本题考查参数方程化普通方程以及垂径定理,考查基本分析求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:由题可知,;考点:扇形面积公式12、【解析】

根据左边的式子是从开始,结束,且指数依次增加1求解即可.【详解】因为左边的式子是从开始,结束,且指数依次增加1所以,左边的式子为,故答案为.【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.13、二【解析】

由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限.【详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二.点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号.14、1【解析】

根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.15、5【解析】

根据程序框图依次计算出、、后即可得解.【详解】由程序框图可知,;,;,.所以.故答案为:.【点睛】本题考查了程序框图的应用,属于基础题.16、【解析】

由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】

(1)根据等差数列的通项公式求出首项,公差和等比数列的通项公式求出首项,公比即可.

(2)由用错位相减法求和.【详解】(1)在等差数列中,设首项为,公差为.由,有,解得:所以又设的公比为,由,,得所以.(2)…………………①……………②由①-②得所以【点睛】本题考查求等差、等比数列的通项公式和用错位相减法求和,属于中档题.18、(1),;(2)的最大值是,最小值是.【解析】试题分析:(1)由条件列关于公差与公比的方程组,解得,,再根据等差与等比数列通项公式求通项公式(2)化简可得,再根据等比数列求和公式得,结合函数单调性,可确定其最值试题解析:(1)设等差数列的公差为,等比数列的公比为,则解得,,所以,.(2)由(1)得,故,当为奇数时,,随的增大而减小,所以;当为偶数时,,随的增大而增大,所以,令,,则,故在时是增函数.故当为奇数时,;当为偶数时,,综上所述,的最大值是,最小值是.19、【解析】

根据,再写出一个等式:,利用两等式判断并得到等差数列的通项,然后求值.【详解】当时,,∴.当时,,①,②①②,得,化简得,或,∵数列是递减数列,且,∴舍去.∴数列是等差数列,且,公差,故.【点睛】在数列中,其前项和为,则有:,利用此关系,可将与的递推公式转化为关于的等式,从而判断的特点.20、(1);(2)【解析】

(1)利用正弦定理边化角可求得,由的范围可求得结果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,即又(2)由余弦定理得:(当且仅当时取等号),即面积的最大值为【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理解三角形、基本不等式求积的最大值、三角形面积公式的应用;求解面积的最大值的关键是能够在余弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论