版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省甘南高一数学第二学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△中,角,,所对的边分别为,,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.函数的部分图象如图所示,函数,则下列结论正确的是()A.B.函数与的图象均关于直线对称C.函数与的图象均关于点对称D.函数与在区间上均单调递增3.已知,,且,,则的值为()A. B.1 C. D.4.已知,,,若点是所在平面内一点,且,则的最大值等于().A. B. C. D.5.记为实数中的最大数.若实数满足则的最大值为()A. B.1 C. D.6.在中,若,,,则()A., B.,C., D.,7.下列函数中,既是奇函数又是增函数的为()A. B. C. D.8.已知向量,则与夹角的大小为()A. B. C. D.9.已知是奇函数,且.若,则()A.1 B.2 C.3 D.410.现有1瓶矿泉水,编号从1至1.若从中抽取6瓶检验,用系统抽样方法确定所抽的编号为()A.3,13,23,33,43,53 B.2,14,26,38,42,56C.5,8,31,36,48,54 D.5,10,15,20,25,30二、填空题:本大题共6小题,每小题5分,共30分。11.已知在中,,则____________.12.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.13.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.14.在中,已知M是AB边所在直线上一点,满足,则________.15.已知函数的最小正周期为,若将该函数的图像向左平移个单位后,所得图像关于原点对称,则的最小值为________.16.为等比数列,若,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列中,.(1)求数列的通项公式;(2)若等比数列满足,求数列的前项和.18.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1,F2,离心率为12,过F1的直线l(1)求椭圆C的方程;(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.19.已知直线截圆所得的弦长为.直线的方程为.(1)求圆的方程;(2)若直线过定点,点在圆上,且,为线段的中点,求点的轨迹方程.20.在数列中,,.(1)分别计算,,的值;(2)由(1)猜想出数列的通项公式,并用数学归纳法加以证明.21.数列的前n项和满足.(1)求证:数列是等比数列;(2)若数列为等差数列,且,求数列的前n项.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由正弦定理分别检验问题的充分性和必要性,可得答案.【详解】解:充分性:在△中,由,可得,所以,故充分性成立;必要性:在△中,由及正弦定理,可得,可得,,故,必要性成立;故可得:在△中,角,,所对的边分别为,,,则“”是“”的充分必要条件,故选C.【点睛】本题主要考查充分条件、必要条件的判断,相对不难,注意正弦定理的灵活运用.2、D【解析】
由三角函数图像可得,,再结合三角函数图像的性质逐一判断即可得解.【详解】解:由函数的部分图象可得,,即,则,又函数图像过点,则,即,又,即,即,则对于选项A,显然错误;对于选项B,函数的图像关于直线对称,即B错误;对于选项C,函数的图像关于点对称,即C错误;对于选项D,函数的增区间为,函数的增区间为,又,,即D正确,故选:D.【点睛】本题考查了利用三角函数图像求函数解析式,重点考查了三角函数图像的性质,属中档题.3、A【解析】
由已知求出,的值,再由,展开两角差的余弦求解,即可得答案.【详解】由,,且,,,,∴,∴,.故选:A.【点睛】本题考查两角和与差的余弦、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意“拆角配角”思想的运用.4、A【解析】以为坐标原点,建立平面直角坐标系,如图所示,则,,,即,所以,,因此,因为,所以的最大值等于,当,即时取等号.考点:1、平面向量数量积;2、基本不等式.5、B【解析】
先利用判别式法求出|x|,|y|,|z|的取值范围,再判断得解.【详解】因为,所以,整理得:,解得,所以,同理,.故选B【点睛】本题主要考查新定义和判别式法求范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、A【解析】
利用正弦定理列出关系式,把与代入得出与的关系式,再与已知等式联立求出即可.【详解】∵在中,,,,∴由正弦定理得:,即,联立解得:.故选:A.【点睛】本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.7、D【解析】
根据奇函数和增函数的定义逐项判断.【详解】选项A:不是奇函数,不正确;选项B::在是减函数,不正确;选项C:定义域上没有单调性,不正确;选项D:设,是奇函数,,在都是单调递增,且在处是连续的,在上单调递增,所以正确.故选:D.【点睛】本题考查函数的性质,对于常用函数的性质要熟练掌握,属于基础题.8、D【解析】
。分别求出,,,利用即可得出答案.【详解】设与的夹角为故选:D【点睛】本题主要考查了求向量的夹角,属于基础题.9、C【解析】
根据题意,由奇函数的性质可得,变形可得:,结合题意计算可得的值,进而计算可得答案.【详解】根据题意,是奇函数,则,变形可得:,则有,即,又由,则,,故选:.【点睛】本题考查函数奇偶性的性质以及应用,涉及诱导公式的应用,属于基础题.10、A【解析】
根据系统抽样原则,可知编号成公差为的等差数列,观察选项得到结果.【详解】根据系统抽样原则,可知所抽取编号应成公差为的等差数列选项编号公差为;选项编号不成等差;选项编号公差为;可知错误选项编号满足公差为的等差数列,正确本题正确选项:【点睛】本题考查抽样方法中的系统抽样,关键是明确系统抽样的原则和特点,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据可得,根据商数关系和平方关系可解得结果.【详解】因为,所以且,又,所以,所以,因为,所以.故答案为:.【点睛】本题考查了三角函数的符号法则,考查了同角公式中的商数关系和平方关系式,属于基础题.12、.【解析】
先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得.,得,即,故选D.【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.13、【解析】
根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.14、3【解析】
由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【详解】因为M在直线AB上,所以可设,
可得,即,又,则由与不共线,所以,解得.故答案为:3【点睛】本题考查向量的减法和向量共线的利用,属于基础题.15、【解析】
先利用周期公式求出,再利用平移法则得到新的函数表达式,依据函数为奇函数,求出的表达式,即可求出的最小值.【详解】由得,所以,向左平移个单位后,得到,因为其图像关于原点对称,所以函数为奇函数,有,则,故的最小值为.【点睛】本题主要考查三角函数的性质以及图像变换,以及型的函数奇偶性判断条件.一般地为奇函数,则;为偶函数,则;为奇函数,则;为偶函数,则.16、【解析】
将这两式中的量全部用表示出来,正好有两个方程,两个未知数,解方程组即可求出。【详解】相当于,相当于,上面两式相除得代入就得,【点睛】基本量法是解决数列计算题最重要的方法,即将条件全部用首项和公比表示,列方程,解方程即可求得。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)求出公差,由公式得通项公式;(2)由(1)求出,计算公比,再由等比数列前项和公式得和.【详解】(1)在等差数列中,,故设的公差为,则,即,所以,所以.(2)设数列的公比为,则,所以.【点睛】本题考查等差数列与等比数列的基本量法.求出数列的首项和公差(或公比),则数列的通项公式与前项和随之而定.18、(1)x2【解析】
(1)根据三角形周长为1,结合椭圆的定义可知,4a=8,利用e=ca=1-b2a2=12,即可求得a和b的值,求得椭圆方程;(2)分类讨论,当直线斜率斜存在时,联立y=kx+b【详解】(1)由题意知,4a=1,则a=2,由椭圆离心率e=ca=∴椭圆C的方程x2(2)由题意,当直线AB的斜率不存在,此时可设A(x3,x3),B(x3,-x3).又A,B两点在椭圆C上,∴x0∴点O到直线AB的距离d=12当直线AB的斜率存在时,设直线AB的方程为y=kx+b.设A(x1,y1),B(x2,y2)联立方程y=kx+bx24+y23由已知△>3,x1+x2=-8kb3+4k2,x1x由OA⊥OB,则x1x2+y1y2=3,即x1x2+(kx1+b)(kx2+b)=3,整理得:(k2+1)x1x2+kb(x1+x2)+b2=3,∴(k∴7b2=12(k2+1),满足△>3.∴点O到直线AB的距离d=b综上可知:点O到直线AB的距离d=221【点睛】本题主要考查椭圆的定义及椭圆标准方程、圆锥曲线的定值问题以及点到直线的距离公式,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.19、(1);(2).【解析】
(1)利用点到直线的距离公式得到圆心到直线的距离,利用直线截圆得到的弦长公式可得半径r,从而得到圆的方程;(2)由已知可得直线l1恒过定点P(1,1),设MN的中点Q(x,y),由已知可得,利用两点间的距离公式化简可得答案.【详解】(1)根据题意,圆的圆心为(0,0),半径为r,则圆心到直线l的距离,若直线截圆所得的弦长为,则有,解可得,则圆的方程为;(2)直线l1的方程为,即,则有,解得,即P的坐标为(1,1),点在圆上,且,为线段的中点,则,设MN的中点为Q(x,y),则,即,化简可得:即为点Q的轨迹方程.【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.20、(1),;
(2),证明见解析【解析】
(1)分别令即可运算得出,,的值;(2)由(1)可猜想出,当时成立,再假设当时,成立,再利用推导出即可.【详解】(1)令有;
令有;
令有所以,,(2)由(1)可得,,,,故可猜想.证明:当时,成立;假设当时,成立,且即当时,,即,化简得,,即也满足,当时成立,故对于任意的,有,证毕.所以.【点睛】本题主要考查了数学归纳法的运用,其中步骤为:(1)证明当取第一个值时命题成立.对于一般数列取值为0或1;(2)假设当()且为自然数)时命题成立,证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程审计合同
- 2025版实习生实习期间实习单位培训责任协议3篇
- 写字楼电梯管理协议
- 2025个人货车租赁合同书
- 建筑工程:车库雨棚施工合同范本
- 家政服务伸缩缝安装施工协议
- 2025版劳动合同补充协议范本汇编3篇
- 2024年教育培训机构广告合作合同范本3篇
- 自建房屋建筑设备租赁合同
- 证券投资联合体投标协议模板
- 2023事业单位资料分析考试内容:资料分析考试练习题
- ktv营运总监岗位职责
- NB-T 10609-2021 水电工程拦漂排设计规范
- 澳大利亚HIH保险公司破产案例
- 三级配电箱巡检记录
- 《全国统一安装工程预算定额》工程量计算规则
- 试论plié的力量特征及其在芭蕾舞技术技巧中的运用
- 政府采购评审专家考试题库与答案(完整版)
- 国内省及地市级名称及邮编
- 2023年上海市旅行社责任保险统保保险方案
- 2023-2024学年山东省威海市小学数学三年级下册期末评估试卷
评论
0/150
提交评论