版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆阿克苏市第一师高级中学2025届高一下数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知、是平面上两个不共线的向量,则下列关系式:①;②;③;④.正确的个数是()A.4 B.3 C.2 D.12.圆与圆的位置关系是()A.相离 B.相交 C.相切 D.内含3.已知等差数列:1,a1,a2,9;等比数列:-9,b1,b2,b3,-1.则b2(a2-a1)的值为()A.8 B.-8C.±8 D.84.以圆形摩天轮的轴心为原点,水平方向为轴,在摩天轮所在的平面建立直角坐标系.设摩天轮的半径为米,把摩天轮上的一个吊篮看作一个点,起始时点在的终边上,绕按逆时针方向作匀速旋转运动,其角速度为(弧度/分),经过分钟后,到达,记点的横坐标为,则关于时间的函数图象为()A. B.C. D.5.如图,将边长为的正方形沿对角线折成大小等于的二面角分别为的中点,若,则线段长度的取值范围为()A. B.C. D.6.一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为()A. B. C. D.7.的内角的对边分别为,边上的中线长为,则面积的最大值为()A. B. C. D.8.在中,,,,则=()A. B.C. D.9.函数的部分图象如图所示,为了得到的图象,只需将的图象A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位10.下列平面图形中,通过围绕定直线旋转可得到如图所示几何体的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知空间中的三个顶点的坐标分别为,则BC边上的中线的长度为________.12.如图,点为正方形边上异于点的动点,将沿翻折成,使得平面平面,则下列说法中正确的是__________.(填序号)(1)在平面内存在直线与平行;(2)在平面内存在直线与垂直(3)存在点使得直线平面(4)平面内存在直线与平面平行.(5)存在点使得直线平面13.已知向量,,则与的夹角等于_______.14.方程的解集为____________.15.已知三棱锥P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,则三棱锥P-ABC外接球的体积为__.16.已知向量,,且,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,求:的值.18.如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.19.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.20.已知数列,.(1)若数列是等比数列,且,求数列的通项公式;(2)若数列是等差数列,且,数列满足,当时,求的值.21.已知数列满足,.(1)证明:数列是等差数列,并求数列的通项公式;(2)设,数列的前n项和为,求使不等式<对一切恒成立的实数的范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据数量积的运算性质对选项进行逐一判断,即可得到答案.【详解】①.,满足交换律,正确.②.,满足分配律,正确.③.,所以不正确.④.,
,可正可负可为0,所以④不正确.故选:C【点睛】本题考查向量数量积的运算性质,属于中档题2、B【解析】
计算圆心距,判断与半径和差的关系得到位置关系.【详解】圆心距相交故答案选B【点睛】本题考查了两圆的位置关系,判断圆心距与半径和差的关系是解题的关键.3、B【解析】a2-a1=d=9-13又b22=b1b因为b2与-9,-1同号,所以b2=-3.所以b2(a2-a1)=-3×8本题选择B选项.4、B【解析】
根据题意,点的横坐标,由此通过特殊点的坐标,判断所给的图象是否满足条件,从而得出结论.【详解】根据题意可得,振幅,角速度,初相,点的横坐标,故当时,,当时,为的最大值,故选:B.【点睛】本题考查三角函数图象的实际应用以及余弦型函数图象的特征,其中,求出函数模型的解析式是解题的关键,考查推理能力,属于中等题.5、A【解析】
连接和,由二面角的定义得出,由结合为的中点,可知是的角平分线且,由的范围可得出的范围,于是得出的取值范围.【详解】连接,可得,即有为二面角的平面角,且,在等腰中,,且,,则,故答案为,故选A.【点睛】本题考查线段长度的取值范围,考查二面角的定义以及锐角三角函数的定义,解题的关键在于充分研究图形的几何特征,将所求线段与角建立关系,借助三角函数来求解,考查推理能力与计算能力,属于中等题.6、C【解析】
过球心作垂直圆面于.连接与圆面上一点构造出直角三角形再计算球的半径即可.【详解】如图,过球心作垂直圆面于,连接与圆面上一点.则.故球的体积为.故选:C【点睛】本题主要考查了球中构造直角三角形求解半径的方法等.属于基础题.7、D【解析】
作出图形,通过和余弦定理可计算出,于是利用均值不等式即可得到答案.【详解】根据题意可知,而,同理,而,于是,即,又因为,代入解得.过D作DE垂直于AB于点E,因此E为中点,故,而,故面积最大值为4,答案为D.【点睛】本题主要考查解三角形与基本不等式的相关综合,表示出三角形面积及使用均值不等式是解决本题的关键,意在考查学生的转化能力,计算能力,难度较大.8、C【解析】
根据正弦定理,代入即可求解.【详解】因为中,,,由正弦定理可知代入可得故选:C【点睛】本题考查了正弦定理在解三角形中的应用,属于基础题.9、B【解析】试题分析:由图象知,,,,,得,所以,为了得到的图象,所以只需将的图象向右平移个长度单位即可,故选D.考点:三角函数图象.10、B【解析】A.是一个圆锥以及一个圆柱;C.是两个圆锥;D.一个圆锥以及一个圆柱;所以选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求出BC的中点,由此能求出BC边上的中线的长度.【详解】解:因为空间中的三个顶点的坐标分别为,所以BC的中点为,所以BC边上的中线的长度为:,故答案为:.【点睛】本题考查三角形中中线长的求法,考查中点坐标公式、两点间距离的求法等基础知识,考查运算求解能力,是基础题.12、(2)(4)【解析】
采用逐一验证法,利用线面的位置关系判断,可得结果.【详解】(1)错,若在平面内存在直线与平行,则//平面,可知//,而与相交,故矛盾(2)对,如图作,根据题意可知平面平面所以,作,点在平面,则平面,而平面,所以,故正确(3)错,若平面,则,而所以平面,则,矛盾(4)对,如图延长交于点连接,作//平面,平面,平面,所以//平面,故存在(5)错,若平面,则又,所以平面所以,可知点在以为直径的圆上又该圆与无交点,所以不存在.故答案为:(2)(4)【点睛】本题主要考查线线,线面,面面之间的关系,数形结合在此发挥重要作用,属中档题.13、【解析】
由已知向量的坐标求得两向量的模及数量积,代入数量积求夹角公式得答案.【详解】∵(﹣1,),(,﹣1),∴,,则cos,∴与的夹角等于.故答案为:.【点睛】本题考查平面向量的数量积运算,考查了由数量积求向量的夹角,是基础题.14、或【解析】
首先将原方程利用辅助角公式化简为,再求出的值即可.【详解】由题知:,,.所以或,.解得:或.所以解集为:或.故答案为:或【点睛】本题主要考查正弦函数的图像及特殊角的三角函数值,同时考查了辅助角公式,属于中档题.15、6【解析】
如图所示,取PB的中点O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O为外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半径R=∴V球=43πR3=4π3×(62)3=6点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.16、-2或3【解析】
用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【详解】由题意得:或本题正确结果:或【点睛】本题考查向量垂直的坐标表示,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
求出和的取值范围,利用同角三角函数的基本关系求出和的值,然后利用两角差的余弦公式可求出的值.【详解】,则,且,,,,,,,因此,.故答案为:.【点睛】本题考查利用两角差的余弦公式求值,解题的关键就是利用已知角来表示所求角,考查计算能力,属于中等题.18、(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.试题解析:证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因为平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1)(2)3≤x≤1.【解析】试题分析:(1)利用两角差的正切公式建立函数关系式,根据基本不等式求最值,最后根据正切函数单调性确定最大时取法,(2)利用两角差的正切公式建立等量关系式,进行参变分离得,再根据a的范围确定范围,最后解不等式得的取值范围.试题解析:(1)当时,过作的垂线,垂足为,则,且,由已知观察者离墙米,且,则,所以,,当且仅当时,取“”.又因为在上单调增,所以,当观察者离墙米时,视角最大.(2)由题意得,,又,所以,所以,当时,,所以,即,解得或,又因为,所以,所以的取值范围为.20、(1);(2).【解析】
(1)数列是公比为的等比数列,由等比数列的通项公式解方程可得首项和公比,即可得到所求通项;(2)数列是公差为的等差数列,由等差数列的通项公式解方程可得首项和公差,可得数列的通项,进而得到,再由指数的运算性质和等差数列的求和公式,计算即可得到所求值.【详解】解:(1)数列是公比为的等比数列,,,可得,,解得,,可得,;(2)数列是公差为的等差数列,,,可得,,解得,,则,,,即可得,可得,解得或(舍去).【点睛】本题考查等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度建筑工地临时用工人员工资支付与争议调解协议3篇
- 应急管理概论 教学大纲
- 企业流程管理培训
- 二零二五年度广告销售渠道拓展合同范本3篇
- ChatGPT助推学校教育数字化转型-人工智能时代学什么与怎么教
- 航空母舰发展史
- 炒菜放料知识培训课件
- 山西省朔州市怀仁市2024-2025学年七年级上学期1月期末生物试题(无答案)
- Unit6 Shopping A let's spell (说课稿)-2023-2024学年人教PEP版英语四年级下册
- 第16章 分式 评估测试卷(含答案)2024-2025学年数学华东师大版八年级下册
- 春联课件教学课件
- 北师大版五年级上册脱式计算400道及答案
- 安徽省芜湖市2023-2024学年高一上学期期末考试 地理试题
- 8《美丽文字 民族瑰宝》教学设计2023-2024学年统编版道德与法治五年级上册
- 2024年工业废水处理工(初级)技能鉴定考试题库(含答案)
- 2024新沪教版英语初一上单词表(英译汉)
- NB/T 11446-2023煤矿连采连充技术要求
- 人教版八年级上册生物期末必刷15道识图题
- SY-T 6966-2023 输油气管道工程安全仪表系统设计规范
- 学生公寓管理员培训
- 固体废弃物循环利用项目风险管理方案
评论
0/150
提交评论