2025届辽宁省建平县高级中学高一下数学期末检测试题含解析_第1页
2025届辽宁省建平县高级中学高一下数学期末检测试题含解析_第2页
2025届辽宁省建平县高级中学高一下数学期末检测试题含解析_第3页
2025届辽宁省建平县高级中学高一下数学期末检测试题含解析_第4页
2025届辽宁省建平县高级中学高一下数学期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省建平县高级中学高一下数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为的三个内角的对边,,的面积为2,则的最小值为().A. B. C. D.2.记为等差数列的前n项和.若,,则等差数列的公差为()A.1 B.2 C.4 D.83.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.94.已知函数,则函数的最小正周期为()A. B. C. D.5.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的是最小的两份之和,则最小的一份的量是()A. B. C. D.6.若将函数的图象向左平移个最小周期后,所得图象对应的函数为()A. B.C. D.7.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.8.在等差数列an中,若a3+A.6 B.7 C.8 D.99.如图,正四面体,是棱上的动点,设(),分别记与,所成角为,,则()A. B. C.当时, D.当时,10.在中,角的对边分别为,且.若为钝角,,则的面积为()A. B. C. D.5二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,则的最大值是__________.12.设函数,则的值为__________.13.在,若,,,则__________________.14.如图,在边长为的菱形中,,为中点,则______.15.若,则________.16.设数列满足,且,则数列的前n项和_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.己知数列是等比数列,且公比为,记是数列的前项和.(1)若=1,>1,求的值;(2)若首项,,是正整数,满足不等式|﹣63|<62,且对于任意正整数都成立,问:这样的数列有几个?18.解下列三角方程:(1);(2).19.设函数,其中,.(1)求的周期及单调递减区间;(2)若关于的不等式在上有解,求实数的取值范围.20.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.21.已知数列的前项和为,点在直线上.数列满足且,前9项和为153.(1)求数列、的通项公式;(2)设,数列的前项和为,求及使不等式对一切都成立的最小正整数的值;(3)设,问是否存在,使得成立?若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出的最小值.【详解】因为,所以,即,令,可得,于是有,因此,即,所以的最小值为,故本题选D.【点睛】本题考查了余弦定理、三角形面积公式,考查了辅助角公式,考查了数学运算能力.2、B【解析】

利用等差数列的前n项和公式、通项公式列出方程组,能求出等差数列{an}的公差.【详解】∵为等差数列的前n项和,,,∴,解得d=2,a1=5,∴等差数列的公差为2.故选:B.【点睛】本题考查等差数列的公差,此类问题根据题意设公差和首项为d、a1,列出方程组解出即可,属于基础题.3、B【解析】

由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【点睛】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.4、D【解析】

根据二倍角公式先化简,再根据即可。【详解】由题意得,所以周期为.所以选择D【点睛】本题主要考查了二倍角公式;常考的二倍角公式有正弦、余弦、正切。属于基础题。5、D【解析】

由题意可得中间部分的为20个面包,设最小的一份为,公差为,可得到和的方程,即可求解.【详解】由题意可得中间的那份为20个面包,设最小的一份为,公差为,由题意可得,解得,故选D.【点睛】本题主要考查了等差数列的通项公式及其应用,其中根据题意设最小的一份为,公差为,列出关于和的方程是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】

首先判断函数的周期,再利用“左加右减自变量,上加下减常数项”解题.【详解】函数的最小正周期为,函数的图象向左平移个最小正周期即平移个单位后,所得图象对应的函数为,即.故选:B.【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,根据“左加右减”进行平移变换即可,对横坐标进行平移变换注意系数ω即可,属于基础题.7、A【解析】

利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题8、C【解析】

通过等差数列的性质可得答案.【详解】因为a3+a9=17【点睛】本题主要考查等差数列的性质,难度不大.9、D【解析】作交于时,为正三角形,,是与成的角,根据等腰三角形的性质,作交于,同理可得,当时,,故选D.10、B【解析】

先由正弦定理求出c的值,再由C角为锐角求出C角的正余弦值,利用角C的余弦公式求出b的值,带入,及可求出面积.【详解】因为,,所以.又因为,且为锐角,所以,.由余弦定理得:,解得,所以.故选B.【点睛】本题考查利用正余弦定理解三角形,三角形的面积公式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】函数在上为减函数,故最大值为.12、【解析】

根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.13、【解析】

由,故用二倍角公式算出,再用余弦定理算得即可.【详解】,又,,又,代入得,所以.故答案为【点睛】本题主要考查二倍角公式与余弦定理,属于基础题型.14、【解析】

选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.15、【解析】

观察式子特征,直接写出,即可求出。【详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【点睛】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。16、【解析】令三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)114【解析】

(1)利用等比数列的求和公式,进而可求的值;(2)根据满足不等式|﹣63|<62,可确定的范围,进而可得随着的增大而增大,利用,可求解.【详解】(1)已知数列是等比数列,且公比为,记是数列的前项和,=1,,,则;(2)满足不等式|﹣63|<62,.,,且,,得随着的增大而增大,得,又且对于任意正整数都成立,得,,且是正整数,满足的个数为:124﹣11+1=114个,即有114个,所以有114个数列.【点睛】本题以等比数列为载体,考查数列的极限,考查等比数列的求和,考查数列的单调性,属于中档题.18、(1);(2)或.【解析】

(1)先将等式变形为,并利用两角和的余弦公式得出,即可得出,即可得出该方程的解;(2)由,将该方程变形为,求出的值,即可求出该方程的解.【详解】(1),,即,,解得;(2),整理得,即,,得或,解得;解,得.因此,原方程的解为或.【点睛】本题考查三角方程的求解,对等式进行化简变形是计算的关键,考查运算求解能力,属于中等题.19、(1),;(2)【解析】

(1)利用坐标形式下向量的数量积运算以及二倍角公式、辅助角公式将化简为的形式,根据周期计算公式以及单调性求解公式即可得到结果;(2)分析在的值域,根据能成立的思想得到与满足的不等关系,求解出的范围即可.【详解】(1)∵,∴,∴的周期为,令,则,的单调递减区间为(2)∵,∴,在上递增,在上递减,且,∴,∴,即,若在上有解,则故:,解得.【点睛】本题考查向量与三角函函数的综合应用,其中着重考查了使用三角恒等变换进行化简以及利用正弦函数的性质分析值域从而求解参数范围,对于转化与计算的能力要求较高,难度一般.20、(1);(2)1【解析】

(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【详解】(1)取中点,连接因为为矩形,分别为中点,所以所以异面直线与所成角就是与所成的锐角或直角因为平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圆周上点,且,所以中,,由余弦定理可求得所以异面直线与所成角的余弦值为(2)连接,连接和交于点,连接因为直线平面,直线平面,平面平面所以矩形的对角线交点为中点所以为的中位线,所以为中点又,所以的值为1【点睛】(1)异面直线所成夹角一般是要平移到一个平面。(2)通过几何关系确定未知点的位置,再求解线段长即可。21、(1);(2)1009;(3)m=11.【解析】

(1)运用数列的通项公式和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论