版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市兰陵县2025届数学高一下期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.棉花的纤维长度是棉花质量的重要指标.在一批棉花中抽测了根棉花的纤维长度(单位:),将样本数据作成如下的频率分布直方图:下列关于这批棉花质量状况的分析,不合理的是()A.这批棉花的纤维长度不是特别均匀B.有一部分棉花的纤维长度比较短C.有超过一半的棉花纤维长度能达到以上D.这批棉花有可能混进了一些次品2.若实数满足约束条件则的最大值与最小值之和为()A. B. C. D.3.在中,已知,,若点在斜边上,,则的值为().A.6 B.12 C.24 D.484.函数的部分图象如图所示,函数,则下列结论正确的是()A.B.函数与的图象均关于直线对称C.函数与的图象均关于点对称D.函数与在区间上均单调递增5.正方体中,异面直线与BC所成角的大小为()A. B. C. D.6.如图是一个射击靶的示意图,其中每个圆环的宽度与中心圆的半径相等.某人朝靶上任意射击一次没有脱靶,则其命中深色部分的概率为()A. B. C. D.7.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3608.表示不超过的最大整数,设函数,则函数的值域为()A. B. C. D.9.在中,分别为角的对边,若的面积为,则的值为()A. B. C. D.10.两个正实数满足,则满足,恒成立的取值范围()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数的部分图象如图所示,则的表达式______.12.在轴上有一点,点到点与点的距离相等,则点坐标为____________.13.已知数列为正项的递增等比数列,,,记数列的前n项和为,则使不等式成立的最大正整数n的值是_______.14.在等比数列中,,,则_____.15.若在区间(且)上至少含有30个零点,则的最小值为_____.16.已知向量,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在平面直角坐标系中,锐角、的终边分别与单位圆交于,两点,点.(1)若点,求的值:(2)若,求.18.某企业生产一种产品,质量测试分为:指标不小于为一等品;指标不小于且小于为二等品;指标小于为三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品亏损元。现对学徒甲和正式工人乙生产的产品各件的检测结果统计如下:测试指标甲乙根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率。求:(1)乙生产一件产品,盈利不小于元的概率;(2)若甲、乙一天生产产品分别为件和件,估计甲、乙两人一天共为企业创收多少元?(3)从甲测试指标为与乙测试指标为共件产品中选取件,求两件产品的测试指标差的绝对值大于的概率.19.己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于A,B两点,且OA⊥OB.(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;(2)若直线l过点(0,2),求l的方程.20.已知数列an的前n项和为S(1)求数列an(2)设bn=an·log221.已知函数,其图象与轴相邻的两个交点的距离为.(1)求函数的解析式;(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据频率分布直方图计算纤维长度超过的频率,可知不超过一半,从而得到结果.【详解】由频率分布直方图可知,纤维长度超过的频率为:棉花纤维长度达到以上的不超过一半不合理本题正确选项:【点睛】本题考查利用频率分布直方图估计总体数据的分布特征,关键是能够熟练掌握利用频率分布直方图计算频率的方法.2、A【解析】
首先根据不等式组画出对应的可行域,再分别计算出顶点的坐标,带入目标函数求出相应的值,即可找到最大值和最小值.【详解】不等式组对应的可行域如图所示:,.,.,,.,,.故选:A【点睛】本题主要考查线性规划,根据不等式组画出可行域为解题的关键,属于简单题.3、C【解析】试题分析:因为,,,所以==+==,故选C.考点:1、平面向量的加减运算;2、平面向量的数量积运算.4、D【解析】
由三角函数图像可得,,再结合三角函数图像的性质逐一判断即可得解.【详解】解:由函数的部分图象可得,,即,则,又函数图像过点,则,即,又,即,即,则对于选项A,显然错误;对于选项B,函数的图像关于直线对称,即B错误;对于选项C,函数的图像关于点对称,即C错误;对于选项D,函数的增区间为,函数的增区间为,又,,即D正确,故选:D.【点睛】本题考查了利用三角函数图像求函数解析式,重点考查了三角函数图像的性质,属中档题.5、D【解析】
利用异面直线与BC所成角的的定义,平移直线,即可得答案.【详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.6、D【解析】
分别求出大圆面积和深色部分面积即可得解.【详解】设中心圆的半径为,所以中心圆的面积为,8环面积为,射击靶的面积为,所以命中深色部分的概率为.故选:D【点睛】此题考查几何概型,属于面积型,关键在于准确求解面积,根据圆环特征分别求出面积即可得解.7、A【解析】
根据数得250粒内夹谷30粒,根据比例,即可求得结论。【详解】设批米内夹谷约为x石,则,解得:选A。【点睛】此题考查简单随机抽样,根据部分的比重计算整体值。8、D【解析】
由已知可证是奇函数,是互为相反数,对是否为正数分类讨论,即可求解.【详解】的定义域为,,,是奇函数,设,若是整数,则,若不是整数,则.的值域是.故选:D.【点睛】本题考查函数性质的应用,考查对新函数定义的理解,考查分类讨论思想,属于中档题.9、B【解析】试题分析:由已知条件及三角形面积计算公式得由余弦定理得考点:考查三角形面积计算公式及余弦定理.10、B【解析】
由基本不等式和“1”的代换,可得的最小值,再由不等式恒成立思想可得小于等于的最小值,解不等式即得m的范围。【详解】由,,可得,当且仅当上式取得等号,若恒成立,则有,解得.故选:B【点睛】本题考查利用基本不等式求恒成立问题中的参数取值范围,是常考题型。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据图象的最高点得到,由图象得到,故得,然后通过代入最高点的坐标或运用“五点法”得到,进而可得函数的解析式.【详解】由图象可得,∴,∴,∴.又点在函数的图象上,∴,∴,∴.又,∴.∴.故答案为.【点睛】已知图象确定函数解析式的方法(1)由图象直接得到,即最高点的纵坐标.(2)由图象得到函数的周期,进而得到的值.(3)的确定方法有两种.①运用代点法求解,通过把图象的最高点或最低点的坐标代入函数的解析式求出的值;②运用“五点法”求解,即由函数最开始与轴的交点(最靠近原点)的横坐标为(即令,)确定.12、【解析】
设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.13、6【解析】
设等比数列{an}的公比q,由于是正项的递增等比数列,可得q>1.由a1+a5=82,a2•a4=81=a1a5,∴a1,a5,是一元二次方程x2﹣82x+81=0的两个实数根,解得a1,a5,利用通项公式可得q,an.利用等比数列的求和公式可得数列{}的前n项和为Tn.代入不等式2019|Tn﹣1|>1,化简即可得出.【详解】数列为正项的递增等比数列,,a2•a4=81=a1a5,即解得,则公比,∴,则,∴,即,得,此时正整数的最大值为6.故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.14、1【解析】
由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【点睛】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.15、【解析】
首先求出在上的两个零点,再根据周期性算出至少含有30个零点时的值即可【详解】根据,即,故,或,∵在区间(且)上至少含有30个零点,∴不妨假设(此时,),则此时的最小值为,(此时,),∴的最小值为,故答案为:【点睛】本题函数零点个数的判断,解决此类问题通常结合周期、函数图形进行解决。属于难题。16、【解析】
根据向量夹角公式可求出结果.【详解】.【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据计算,,代入公式得到答案.(2)根据,得到,根据计算得到答案.【详解】解:(1)因为是锐角,且,在单位圆上,所以,,,∴(2)因为,所以,且,所以,,可得:,且,所以,.【点睛】本题考查了三角函数的计算,意在考查学生对于三角函数定义的理解和应用.18、(1);(2)元;(3)【解析】
(1)设事件表示“乙生产一件产品,盈利不小于25元”,即该产品的测试指标不小于80,由此能求出乙生产一件产品,盈利不小于25元的概率.(2)由表格知甲生产的一等品、二等品、三等品比例为即,所以甲一天生产30件产品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生产的一等品、二等品、三等品比例为,所以乙一天生产20件产品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙两人一天共为企业创收1195元.(3)设甲测试指标为,的7件产品用,,,,,,表示,乙测试指标为,的7件产品用,表示,利用列举法能求出两件产品的测试指标差的绝对值大于10的概率.【详解】(1)设事件表示“乙生产一件产品,盈利不小于元”,即该产品的测试指标不小于,则;(2)甲一天生产件产品,其中一等品有件;二等品有件;三等品有件;甲一天生产件产品,其中一等品有件;二等品有件;三等品有,即甲、乙两人一天共为企业创收元;(3)设甲测试指标为的件产品用,,,,表示,乙测试指标为的件产品用,表示,用(,且)表示从件产品中选取件产品的一个结果.不同结果为,,,,,,,,,,,,,,,,,,,,,,共有36个不同结果.设事件表示“选取的两件产品的测试指标差的绝对值大于”,即从甲、乙生产的产品中各取件产品,不同的结果为,,,,,,,,,,,,,,共有个不同结果.则.【点睛】本题主要考查古典概型概率的求法,即按照古典概型的概率计算公式分别求出基本事件总数以及有利事件数即可算出概率,以及列举法和随机抽样的应用.19、(1);(2).【解析】
(1)根据题意,求得直线OB的方程,利用点到直线的距离公式求得圆心到直线OB的距离,之后应用圆中的特殊三角形,求得弦长;(2)根据题意,可判断直线的斜率是存在的,设出其方程,与圆的方程联立,得到两根和与两根积,根据OA⊥OB,利用向量数量积等于零得到所满足的等量关系式,求得结果.【详解】(1)因为直线OA的方程为,,所以直线OB的方程.从而圆心到直线OB的距离为:所以直线OB被团C截得的弦长为:.(2)依题意,直线l的斜率必存在,不妨设其为k,则l的方程为,又设,.由得,所以,.从而.所以.因为,所以,即,解得.所以l的方程为.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有两直线垂直的条件,直线被圆截得的弦长,直线方程的求解,属于简单题目.20、(1)an=【解析】
(1)利用an=S(2)利用错位相减法可求Tn【详解】(1)因为Sn=2整理得到an=4,n=1(2)因为bn所以Tn2T所以-Tn【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.21、(1)(2)单调增区间为,;单调减区间为.【解析】
(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第三单元 综合探究 企业创办之旅 说课稿-2023-2024学年高中政治统编版选择性必修二法律与生活
- 统编版语文九年级上册期末复习训练题(含答案)
- 第四单元 商路、贸易与文化交流(单元测试A卷基础夯实)-2024-2025学年高二下学期历史统编版(2019)选择性必修3文化交流与传播(含答案)
- 中班安全呼救教学课件
- 新高考数学题型全归纳之排列组合专题09间接法模型含答案及解析
- 2025年全国会计证资格考试会计基础知识全真模拟题库及答案(共七套)
- 青春无悔砥砺前行
- 第六章 发展与合作 说课稿-2024-2025学年人教版初中地理 七年级上册001
- 2024版简单的租房合同协议书
- 《男性不育症的治疗》课件
- 《中国传统文化》课件模板(六套)
- 民航客舱服务管理Ⅱ学习通超星期末考试答案章节答案2024年
- 儿科主任年终总结
- 2023年上海市录用公务员考试真题
- 期末 (试题) -2024-2025学年人教PEP版英语四年级上册
- 第三单元 (单元测试)-2024-2025学年-四年级上册语文统编版
- 浪潮销售在线测评题
- 总经理年会发言稿模板怎么写(8篇素材参考)
- 《完善中国特色社会主义法治体系》课件
- 2024年人教版小学四年级信息技术(上册)期末试卷附答案
- 空气动力学优化技术:拓扑优化:拓扑优化项目设计与实践
评论
0/150
提交评论