辽宁省丹东市凤城市一中2025届高一数学第二学期期末教学质量检测试题含解析_第1页
辽宁省丹东市凤城市一中2025届高一数学第二学期期末教学质量检测试题含解析_第2页
辽宁省丹东市凤城市一中2025届高一数学第二学期期末教学质量检测试题含解析_第3页
辽宁省丹东市凤城市一中2025届高一数学第二学期期末教学质量检测试题含解析_第4页
辽宁省丹东市凤城市一中2025届高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省丹东市凤城市一中2025届高一数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆与圆恰有三条公切线,则实数的值是()A.4 B.6 C.16 D.362.已知等差数列中,,则()A. B.C. D.3.某公司的班车在和三个时间点发车.小明在至之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过分钟的概率是()A. B. C. D.4.在数列an中,a1=1,an=2A.211 B.25.已知,是两条不同的直线,,是两个不同的平面,则下列说法正确的是()A.若,,则 B.若,,,则C.若,,则 D.若,,则6.下列三角方程的解集错误的是()A.方程的解集是B.方程的解集是C.方程的解集是D.方程(是锐角)的解集是7.对变量有观测数据,得散点图(1);对变量有观测数据(,得散点图(2),由这两个散点图可以判断()A.变量与正相关,与正相关 B.变量与正相关,与负相关C.变量与负相关,与正相关 D.变量与负相关,与负相关8.若,则下列不等式恒成立的是()A. B. C. D.9.若数列{an}是等比数列,且an>0,则数列也是等比数列.若数列是等差数列,可类比得到关于等差数列的一个性质为().A.是等差数列B.是等差数列C.是等差数列D.是等差数列10.已知点、、在圆上运动,且,若点的坐标为,的最大值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.当实数a变化时,点到直线的距离的最大值为_______.12.如图所示,分别以为圆心,在内作半径为2的三个扇形,在内任取一点,如果点落在这三个扇形内的概率为,那么图中阴影部分的面积是____________.13.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为.14.已知,,若,则的取值范围是__________.15.设集合,它共有个二元子集,如、、等等.记这个二元子集为、、、、,设,定义,则_____.(结果用数字作答)16.已知,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在正四棱柱中,底面边长为,侧棱长为.(1)求证:平面平面;(2)求直线与平面所成的角的正弦值;(3)设为截面内-点(不包括边界),求到面,面,面的距离平方和的最小值.18.经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:.(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?19.已知等差数列中,与的等差中项为,.(1)求的通项公式;(2)令,求证:数列的前项和.20.已知点,圆.(1)求过点M的圆的切线方程;(2)若直线与圆相交于A,B两点,且弦AB的长为,求的值.21.已知圆,过点的直线与圆相交于不同的两点,.(1)若,求直线的方程.(2)判断是否为定值.若是,求出这个定值;若不是,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

两圆外切时,有三条公切线.【详解】圆标准方程为,∵两圆有三条公切线,∴两圆外切,∴,.故选C.【点睛】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线.2、C【解析】

,.故选C.3、A【解析】

根据题意得小明等车时间不超过分钟的总的时间段,再由比值求得.【详解】小明等车时间不超过分钟,则他需在至到,或至到,共计分钟,所以概率故选A.【点睛】本题考查几何概型,关键找到满足条件的时间段,属于基础题.4、D【解析】

将a1=1代入递推公式可得a2,同理可得出a【详解】∵a1=1,an=22an-1-1(【点睛】本题用将a15、D【解析】

试题分析:,是两条不同的直线,,是两个不同的平面,在A中:若,,则,相交、平行或异面,故A错误;在B中:若,,,则,相交、平行或异面,故B错误;在C中:若,,则或,故C误;在D中:若,,由面面平行的性质定理知,,故D正确.考点:空间中直线、平面之间的位置关系.6、B【解析】

根据余弦函数的性质可判断B是错误的.【详解】因为,故无解,故B错.对于A,的解集为,故A正确.对于C,的解集是,故C正确.对于D,,.因为为锐角,,所以或或,所以或或,故D正确.故选:B.【点睛】本题考查三角方程的解,注意对于三角方程,我们需掌握有解的条件和其通解公式,而给定范围上的解,需结合整体的范围来讨论,本题属于基础题.7、C【解析】

根据增大时的变化趋势可确定结果.【详解】图(1)中,随着的增大,的变化趋势是逐渐在减小,因此变量与负相关;图(2)中,随着的增大,的变化趋势是逐渐在增大,因此变量与正相关.故选:【点睛】本题考查根据散点图判断相关关系的问题,属于基础题.8、D【解析】

利用不等式的性质、对数、指数函数的图像和性质,对每一个选项逐一分析判断得解.【详解】对于选项A,不一定成立,如a=1>b=-2,但是,所以该选项是错误的;对于选项B,所以该选项是错误的;对于选项C,ab符号不确定,所以不一定成立,所以该选项是错误的;对于选项D,因为a>b,所以,所以该选项是正确的.故选D【点睛】本题主要考查不等式的性质,考查对数、指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、B【解析】试题分析:本题是由等比数列与等差数列的相似性质,推出有关结论:由“等比”类比到“等差”,由“几何平均数”类比到“算数平均数”;所以,所得结论为是等差数列.考点:类比推理.10、C【解析】

由题意可知为圆的一条直径,由平面向量加法的平行四边形法则可得(为坐标原点),然后利用平面向量模的三角不等式以及圆的几何性质可得出的最大值.【详解】如下图所示:,为圆的一条直径,由平面向量加法的平行四边形法则可得(为坐标原点),由平面向量模的三角不等式可得,当且仅当点的坐标为时,等号成立,因此,的最大值为.故选:C.【点睛】本题考查向量模的最值问题,涉及平面向量模的三角不等式以及圆的几何性质的应用,考查数形结合思想的应用,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由已知直线方程求得直线所过定点,再由两点间的距离公式求解.【详解】由直线,得,联立,解得.直线恒过定点,到直线的最大距离.故答案为:.【点睛】本题考查点到直线距离最值的求法,考查直线的定点问题,是基础题.12、【解析】

先求出三块扇形的面积,再由概率计算公式求出的面积,进而求出阴影部分的面积.【详解】∵,∴三块扇形的面积为:,设的面积为,∵在内任取一点,点落在这三个扇形内的概率为,,∴图中阴影部分的面积为:,故答案为:.【点睛】本题主要考查几何概型的应用,属于几何概型中的面积问题,难度不大.13、【解析】

由题意可得:该三棱锥的三条侧棱两两垂直,长都为,所以三棱锥的体积.考点:三棱锥的体积公式.14、【解析】数形结合法,注意y=,y≠0等价于x2+y2=9(y>0),它表示的图形是圆x2+y2=9在x轴之上的部分(如图所示).结合图形不难求得,当-3<b≤3时,直线y=x+b与半圆x2+y2=9(y>0)有公共点.15、1835028【解析】

分别分析中二元子集中较大元素分别为、、、时,对应的二元子集中较小的元素,再利用题中的定义结合数列求和思想求出结果.【详解】当二元子集较大的数为,则较小的数为;当二元子集较大的数为,则较小的数为、;当二元子集较大的数为,则较小的数为、、;当二元子集较大的数为,则较小的数为、、、、.由题意可得,令,得,上式下式得,化简得,因此,,故答案为:.【点睛】本题考查新定义,同时也考查了数列求和,解题的关键就是找出相应的规律,列出代数式进行计算,考查运算求解能力,属于难题.16、28【解析】试题分析:由等差数列的前n项和公式,把等价转化为所以,然后求得a值.考点:极限及其运算三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)(3)【解析】

(1)利用在正方体的几何性质,得到,通过线面垂直和面面垂直的判定定理证明.(2)根据和平面平面,知是在平面上的射影,即为直线与平面所成的角,然后在中求解.(3)如图所示从向面,面,面引垂线,构成一个长方体,设到面,面,面的距离分别为x,y,z,,即长方体体对角线长的平方,当且仅当平面时,最小,然后用等体积法求解.【详解】(1)如图所示:在正方体中且,所以平面,又因为平面,所以平面平面.(2)因为,由(1)知平面平面,所以是在平面上的射影,所以即为直线与平面所成的角,在中,所以.(3)如图所示从向面,面,面引垂线,构成一个长方体,设到面,面,面的距离分别为x,y,z,,即长方体体对角线长的平方,当且仅当平面时,最小,又因为,即,,.【点睛】本题主要考查几何体中线面垂直,面面垂直的判定定理和线面角及距离问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.18、(1)v=40千米/小时,车流量最大,最大值为11.08千辆/小时(2)汽车的平均速度应控制在25≤v≤64这个范围内【解析】

(1)将已知函数化简,利用基本不等式求车流量y最大值;

(2)要使该时段内车流量至少为10千辆/小时,即使,解之即可得汽车的平均速度的控制范围.【详解】解:(1)=≤=≈11.08,当v=,即v=40千米/小时,车流量最大,最大值为11.08千辆/小时.(2)据题意有:,化简得,即,所以,所以汽车的平均速度应控制在这个范围内.【点睛】本题以已知函数关系式为载体,考查基本不等式的使用,考查解不等式,属于基础题.19、(1)(2)见解析【解析】

(1)利用和表示出和,解方程求得和;根据等差数列通项公式求得结果;(2)整理出的通项公式,利用裂项相消法可求得,根据可证得结论.【详解】(1)设数列的公差为则,解得:(2)由(1)知:,即【点睛】本题考查等差数列通项公式的求解、裂项相消法求解数列的前项和;关键是能够将需求和的数列的通项裂为可前后抵消的形式,加和可求得结果,属于常考题型.20、(1)或.(2)【解析】

(1)分切线的斜率不存在与存在两种情况分析.当斜率存在时设方程为,再根据圆心到直线的距离等于半径求解即可.(2)利用垂径定理根据圆心到直线的距离列出等式求解即可.【详解】解:(1)由题意知圆心的坐标为,半径,当过点M的直线的斜率不存在时,方程为.由圆心到直线的距离知,此时,直线与圆相切.当过点M的直线的斜率存在时,设方程为,即.由题意知,解得,∴方程为.故过点M的圆的切线方程为或.(2)∵圆心到直线的距离为,∴,解得.【点睛】本题主要考查了直线与圆相切与相交时的求解.注意直线过定点时分析斜率不存在与存在两种情况.直线与圆相切用圆心到直线的距离等于半径列式,直线与圆相交用垂径定理列式.属于中档题.21、(1)或.(2)是,定值.【解析】

(1)根据题意设出,再联立直线方程和圆的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论