湖南省常德市芷兰实验学校2025届高一数学第二学期期末统考模拟试题含解析_第1页
湖南省常德市芷兰实验学校2025届高一数学第二学期期末统考模拟试题含解析_第2页
湖南省常德市芷兰实验学校2025届高一数学第二学期期末统考模拟试题含解析_第3页
湖南省常德市芷兰实验学校2025届高一数学第二学期期末统考模拟试题含解析_第4页
湖南省常德市芷兰实验学校2025届高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省常德市芷兰实验学校2025届高一数学第二学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将一个总体分为甲、乙、丙三层,其个体数之比为,若用分层抽样的方法抽取容量为200的样本,则应从丙层中抽取的个体数为()A.20 B.40 C.60 D.1002.若,则下列不等式成立的是()A. B.C. D.3.已知函数,其中为整数,若在上有两个不相等的零点,则的最大值为()A. B. C. D.4.已知平面平面,直线平面,直线平面,,在下列说法中,①若,则;②若,则;③若,则.正确结论的序号为()A.①②③ B.①② C.①③ D.②③5.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为()A. B.C. D.6.若,,那么在方向上的投影为()A.2 B. C.1 D.7.在区间内随机取一个实数a,使得关于x的方程有实数根的概率为()A. B. C. D.8.已知角的终边经过点,则()A. B. C. D.9.已知数列的前项为和,且,则()A.5 B. C. D.910.《趣味数学·屠夫列传》中有如下问题:“戴氏善屠,日益功倍。初日屠五两,今三十日屠讫,问共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?”()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式为,数列的通项公式为,设,若在数列中,对任意恒成立,则实数的取值范围是_________.12.已知函数,若,则__________.13.若存在实数使得关于的不等式恒成立,则实数的取值范围是____.14.已知数列的通项公式,,前项和达到最大值时,的值为______.15.在等比数列中,,公比,若,则的值为.16.辗转相除法,又名欧几里得算法,是求两个正整数之最大公约数的算法,它是已知最古老的算法之一,在中国则可以追溯至汉朝时期出现的《九章算术》.下图中的程序框图所描述的算法就是辗转相除法.若输入、的值分别为、,则执行程序后输出的的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的公比,且的等差中项为10,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.18.某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.日期第1天第2天第3天第4天第5天温度(℃)101113128发芽数(颗)2326322616(1)求余下的2组数据恰好是不相邻2天数据的概率;(2)若选取的是第2、3、4天的数据,求关于的线性回归方程;(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?(参考公式;线性回归方程中系数计算公式:,,其中、表示样本的平均值)19.在中,角、、的对边分别为、、,为的外接圆半径.(1)若,,,求;(2)在中,若为钝角,求证:;(3)给定三个正实数、、,其中,问:、、满足怎样的关系时,以、为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情兄下,用、、表示.20.如图,在四棱锥中,底面为菱形,、、分别是棱、、的中点,且平面.(1)求证:平面;(2)求证:平面.21.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

求出丙层所占的比例,然后求出丙层中抽取的个体数【详解】因为甲、乙、丙三层,其个体数之比为,所以丙层所占的比例为,所以应从丙层中抽取的个体数为,故本题选B.【点睛】本题考查了分层抽样中某一层抽取的个体数的问题,考查了数学运算能力.2、D【解析】

取特殊值检验,利用排除法得答案。【详解】因为,则当时,故A错;当时,故B错;当时,,故C错;因为且,所以故选D.【点睛】本题考查不等式的基本性质,属于简单题。3、A【解析】

利用一元二次方程根的分布的充要条件得到关于的不等式,再由为整数,可得当取最小时,取最大,从而求得答案.【详解】∵在上有两个不相等的零点,∴∵,∴当取最小时,取最大,∵两个零点的乘积小于1,∴,∵为整数,令时,,满足.故选:A.【点睛】本题考查一元二次函数的零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数的应用.4、D【解析】

由面面垂直的性质和线线的位置关系可判断①;由面面垂直的性质定理可判断②;由线面垂直的性质定理可判断③.【详解】平面平面.直线平面,直线平面,,①若,可得,可能平行,故①错误;②若,由面面垂直的性质定理可得,故②正确;③若,可得,故③正确.故选:D.【点睛】本题考查空间线线和线面、面面的位置关系,主要是平行和垂直的判断和性质,考查推理能力,属于基础题.5、A【解析】

由题意利用函数的图象变换法则,即可得出结论。【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选.【点睛】本题主要考查函数的图象变换法则,注意对的影响。6、C【解析】

根据定义可知,在方向上的投影为,代入即可求解.【详解】,,那么在方向上的投影为.故选:C.【点睛】本题考查向量数量积的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础试题.7、C【解析】

由关于x的方程有实数根,求得,再结合长度比的几何概型,即可求解,得到答案.【详解】由题意,关于x的方程有实数根,则满足,解得,所以在区间内随机取一个实数a,使得关于x的方程有实数根的概率为.故选:C.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力,属于基础题.8、C【解析】

首先根据题意求出,再根据正弦函数的定义即可求出的值.【详解】,.故选:C【点睛】本题主要考查正弦函数的定义,属于简单题.9、D【解析】

先根据已知求出数列的通项,再求解.【详解】当时,,可得;当且时,,得,故数列为等比数列,首项为4,公比为2.所以所以.故选D【点睛】本题主要考查项和公式求数列通项,考查等比数列的通项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.10、D【解析】

根据题意,得到该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,由题中熟记,以及等比数列的求和公式,即可得出结果.【详解】由题意,该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此.故选:D【点睛】本题主要考查等比数列的应用,熟记等比数列的求和公式即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先分析题意,可知是取和中的最大值,且是该数列中的最小项,结合数列的单调性和数列的单调性可得出或,代入数列的通项公式即可求出实数的取值范围.【详解】由题意可知,是取和中的最大值,且是数列中的最小项.若,则,则前面不会有数列的项,由于数列是单调递减数列,数列是单调递增数列.,数列单调递减,当时,必有,即.此时,应有,,即,解得.,即,得,此时;若,则,同理,前面不能有数列的项,即,当时,数列单调递增,数列单调递减,.当时,,由,即,解得.由,得,解得,此时.综上所述,实数的取值范围是.故答案为:.【点睛】本题考查利用数列的最小项求参数的取值范围,同时也考查了数列中的新定义,解题的关键就是要分析出数列的单调性,利用一些特殊项的大小关系得出不等式组进行求解,考查分析问题和解决问题的能力,属于难题.12、【解析】

由三角函数的辅助角公式化简,关键需得出辅助角的正切值,再由函数的最大值求解.【详解】由三角函数的辅助公式得(其中),因为所以,所以,所以,,所以,故填:【点睛】本题考查三角函数的辅助角公式,属于基础题.13、【解析】

先求得的取值范围,将题目所给不等式转化为含的绝对值不等式,对分成三种情况,结合绝对值不等式的解法和不等式恒成立的思想,求得的取值范围.【详解】由于,故可化简得恒成立.当时,显然成立.当时,可得,,可得且,可得,即,解得.当时,可得,可得且,可得,即,解得.综上所述,的取值范围是.【点睛】本小题主要考查三角函数的值域,考查含有绝对值不等式恒成立问题,考查存在性问题的求解策略,考查函数的单调性,考查化归与转化的数学思想方法,属于难题.14、或【解析】

令,求出的取值范围,即可得出达到最大值时对应的值.【详解】令,解得,因此,当或时,前项和达到最大值.故答案为:或.【点睛】本题考查等差数列前项和最值的求解,可以利用关于的二次函数,由二次函数的基本性质求得,也可以利用等差数列所有非正项或非负项相加即得,考查计算能力,属于基础题.15、1【解析】

因为,,故答案为1.考点:等比数列的通项公式.16、【解析】

程序的运行功能是求,的最大公约数,根据辗转相除法可得的值.【详解】由程序语言知:算法的功能是利用辗转相除法求、的最大公约数,当输入的,,;,,可得输出的.【点睛】本题主要考查了辗转相除法的程序框图的理解,掌握辗转相除法的操作流程是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ).(Ⅱ)【解析】

(Ⅰ)利用已知条件求出首项与公差,然后根据等比数列的通项公式,即可求出结果;(Ⅱ)先求出,再利用错位相减法求数列的前项和.【详解】解析:(Ⅰ)由题意可得:,∴∵,∴,∴数列的通项公式为.(Ⅱ),∴上述两式相减可得∴=【点睛】本题考查等比数列通项公式的求法,以及利用错位相减法求和,考查计算能力,属于基础题.18、(1);(2);(3)线性回归方程是可靠的.【解析】

(1)用列举法求出基本事件数,计算所求的概率值;(2)由已知数据求得与,则线性回归方程可求;(3)利用回归方程计算与8时的值,再由已知数据作差取绝对值,与1比较大小得结论.【详解】解:(1)设“余下的2组数据恰好是不相邻2天数据为事件”,从5组数据中选取3组数据,余下的2组数据共10种情况:,,,,,,,,,.其中事件的有6种,;(2)由数据求得,,且,.代入公式得:,.线性回归方程为:;(3)当时,,,当时,,.故得到的线性回归方程是可靠的.【点睛】本题考查了线性回归方程的求法与应用问题,考查古典概型的概率计算问题,属于中档题.19、(1);(2)见解析;(3)见解析.【解析】

(1)利用正弦定理求出的值,然后利用余弦定理求出的值;(2)由余弦定理得出可得证;(3)分类讨论判断三角形的形状与两边、的关系,以及与直径的大小的比较,分类讨论即可.【详解】(1)由正弦定理得,所以,由余弦定理得,化简得.,解得;(2)由于为钝角,则,由于,,得证;(3)①当或时,所求不存在;②当且时,,所求有且只有一个,此时;③当时,都是锐角,,存在且只有一个,;④当时,所求存在两个,总是锐角,可以是钝角也可以是锐角,因此所求存在,当时,,,,,;当时,,,,,.【点睛】本题综合考查了三角形形状的判断,考查了解三角形、三角形的外接圆等知识,综合性较强,尤其是第三问需要根据、两边以及直径的大小关系确定三角形的形状,再在这种情况下求第三边的表达式,本解法主观性较强,难度较大.20、(1)见解析;(2)见解析【解析】

(1)取中点,连接,,得,利用直线与平面平行的判定定理证明平面.(2)连结,由已知条件得,由平面,得,利用直线与平面垂直的判定定理证明平面.【详解】(1)取中点,连接,,∵、分别是棱、的中点,∴,且.∵在菱形中,是的中点,∴,且,∴且,∴为平行四边形.∴.∵平面,平面,∴平面.(2)连接,∵是菱形,∴,∵,分别是棱、的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论