湖北省华师一附中、黄冈中学等八校2025届数学高一下期末教学质量检测模拟试题含解析_第1页
湖北省华师一附中、黄冈中学等八校2025届数学高一下期末教学质量检测模拟试题含解析_第2页
湖北省华师一附中、黄冈中学等八校2025届数学高一下期末教学质量检测模拟试题含解析_第3页
湖北省华师一附中、黄冈中学等八校2025届数学高一下期末教学质量检测模拟试题含解析_第4页
湖北省华师一附中、黄冈中学等八校2025届数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省华师一附中、黄冈中学等八校2025届数学高一下期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如右图所示,直线的斜率分别为则A. B.C. D.2.《九章算术》是我国古代数学成就的杰出代表作之一,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢矢),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于6米的弧田,按照上述经验公式计算所得弧田面积约为()A.12平方米 B.16平方米 C.20平方米 D.24平方米3.在△中,为边上的中线,为的中点,则A. B.C. D.4.已知角α的终边过点P(2sin60°,-2cos60°),则sinα的值为()A. B. C.- D.-5.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则 B.若,则C.若,则 D.若,则6.在△ABC中,角A、B、C所对的边分别为a、b、c,若acosA=bcosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形7.《趣味数学·屠夫列传》中有如下问题:“戴氏善屠,日益功倍。初日屠五两,今三十日屠讫,问共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?”()A. B. C. D.8.函数的定义域是().A. B. C. D.9.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BD⊥AC,与半圆相交于D,AC=6,BD=22A.29 B.13 C.410.在正方体中为底面的中心,为的中点,则异面直线与所成角的正弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一组数据2,4,5,,7,9的众数是7,则这组数据的中位数是__________.12.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.13.不等式的解集是______.14.已知数列的通项公式为,若数列为单调递增数列,则实数的取值范围是______.15.已知向量,向量,若与垂直,则__________.16.已知,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角,,的对边分别为,,.已知,,且的面积为.(1)求的值;(2)求的周长.18.已知圆以原点为圆心且与直线相切.(1)求圆的方程;(2)若直线与圆交于、两点,过、两点分别作直线的垂线交轴于、两点,求线段的长.19.已知向量.(1)若,求的值;(2)记函数,求的最大值及单调递增区间.20.已知函数(1)求函数的单调递减区间;(2)若将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数的图象关于轴对称.求的最小值21.已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若,证明:函数必有局部对称点;(2)若函数在区间内有局部对称点,求实数的取值范围;(3)若函数在上有局部对称点,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由图可知,,所以,故选C.考点:直线的斜率.2、C【解析】

在中,由题意OA=4,∠DAO=,即可求得OD,AD的值,根据题意可求矢和弦的值,即可利用公式计算求值得解.【详解】如图,由题意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面积=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故选:C【点睛】本题考查扇形的面积公式,考查数学阅读能力和数学运算能力,属于中档题.3、A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.4、D【解析】

利用特殊角的三角函数值得出点的坐标,然后利用正弦的定义,求得的值.【详解】依题意可知,所以,故选D.【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,属于基础题.5、C【解析】对于A、B、D均可能出现,而对于C是正确的.6、C【解析】

利用正弦定理由acosA=bcosB,可得sinAcosA=sinBcosB,再利用二倍角的正弦即可判断△ABC的形状.【详解】在△ABC中,∵acosA=bcosB,∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形状为等腰三角形或直角三角形.故选C.考点:三角形的形状判断.7、D【解析】

根据题意,得到该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,由题中熟记,以及等比数列的求和公式,即可得出结果.【详解】由题意,该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此.故选:D【点睛】本题主要考查等比数列的应用,熟记等比数列的求和公式即可,属于基础题型.8、C【解析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.9、C【解析】

求得阴影部分的面积和最大的半圆的面积,再根据面积型几何概型的概率计算公式求解.【详解】连接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),则有8=x(6-x),得x=2,所以AB=2, BC=4,由此可得图中阴影部分的面积等于π×3【点睛】本题考查了与面积有关的几何概型的概率的求法,当试验结果所构成的区域可用面积表示,用面积比计算概率.涉及了初中学习的射影定理,也可通过证明相似,求解各线段的长.10、B【解析】

取BC中点为M,连接OM,EM找出异面直线夹角为,在三角形中利用边角关系得到答案.【详解】取BC中点为M,连接OM,EM在正方体中为底面的中心,为的中点易知:异面直线与所成角为设正方体边长为2,在中:故答案选B【点睛】本题考查了立体几何里异面直线的夹角,通过平行找到对应的角是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】

由题得x=7,再利用中位数的公式求这组数据的中位数.【详解】因为数据2,4,5,,7,9的众数是7,所以,则这组数据的中位数是.故答案为6【点睛】本题主要考查众数的概念和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.12、【解析】

根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.13、【解析】

由题可得,分式化乘积得,进而求得解集.【详解】由移项通分可得,即,解得,故解集为【点睛】本题考查分式不等式的解法,属于基础题.14、【解析】

根据题意得到,推出,恒成立,求出的最大值,即可得出结果.【详解】因为数列的通项公式为,且数列为单调递增数列,所以,即,所以,恒成立,因此即可,又随的增大而减小,所以,因此实数的取值范围是.故答案为:【点睛】本题主要考查由数列的单调性求参数,熟记递增数列的特点即可,属于常考题型.15、;【解析】

由计算可得.【详解】,∵与垂直,∴,.故答案为-1.【点睛】本题考查向量垂直的坐标运算.由向量垂直得其数量积为0,本题属于基础题.16、【解析】

利用同角三角函数的基本关系将弦化切,再代入计算可得.【详解】解:,故答案为:【点睛】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由和可得sinA和cosA,再由二倍角公式即得cos2A;(2)由面积公式,可得的值,再由和正弦定理可知b和c的值,用余弦定理可计算出a,即得的周长.【详解】解:(1)因为,所以,.因为,所以,,则.(2)由题意可得,的面积为,即.因为,所以,所以,.由余弦定理可得.故的周长为.【点睛】本题考查用正弦定理和余弦定理解三角形,以及二倍角公式,属于常考题型.18、(1);(2).【解析】

(1)计算原点到直线的距离,作为圆的半径,从而可得出圆的方程;(2)计算出圆心到直线的距离,利用勾股定理可计算出,过点作,垂足为,求出直线的倾斜角为,再利用锐角三角函数的定义可求出.【详解】(1)把直线化为一般式,即,到直线的距离为,圆的半径为,圆的方程为;(2)直线的一般方程为,点到直线的距离为,圆的半径为,则,过点作,垂足为,.又的倾斜角为,,.因此,线段的长为.【点睛】本题考查圆的方程的求解,同时也考查了直线截圆所得弦长的计算,涉及了锐角三角函数的定义的应用,考查计算能力,属于中等题.19、(1)或,(2),增区间为:【解析】

(1)根据得到,再根据的范围解方程即可.(2)首先根据题意得到,再根据的范围即可得到函数的最大值和单调增区间.【详解】因为,所以,即.因为,.所以或,即或.(2).因为,所以.所以,.因为,所以.令,得.因为,所以增区间为:.【点睛】本题第一问考查根据三角函数值求角,同时考查了平面向量平行的坐标运算,第二问考查了三角函数的最值和单调区间,属于中档题.20、(1),,.(2).【解析】

(1)根据诱导公式,二倍角公式,辅助角公式把化为的形式,再根据复合函数单调性求解;(2)先根据变换关系得到函数解析式,所得函数的图象关于轴对称,则时,.【详解】(1)当即时,函数单调递减,所以函数的单调递减区间为.(2)将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数为,若图象关于轴对称,则,即,解得,又,则当时,有最小值.【点睛】本题主要考查三角函数的性质和图像的变换.关键在于化为的形式,三角函数的平移变换是易错点.21、(1)见解析;(2);(3)【解析】

试题分析:(1)利用题中所给的定义,通过二次函数的判别式大于0,证明二次函数有局

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论