广西桂林市阳朔中学2025届数学高一下期末联考模拟试题含解析_第1页
广西桂林市阳朔中学2025届数学高一下期末联考模拟试题含解析_第2页
广西桂林市阳朔中学2025届数学高一下期末联考模拟试题含解析_第3页
广西桂林市阳朔中学2025届数学高一下期末联考模拟试题含解析_第4页
广西桂林市阳朔中学2025届数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西桂林市阳朔中学2025届数学高一下期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的前项和为,若,则的值为A.10 B.15 C.25 D.302.已知点在第四象限,则角在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,是两条不同的直线,,是两个不同的平面,给出下列四个结论:①,,,则;②若,,,则;③若,,,则;④若,,,则.其中正确结论的序号是A.①③ B.②③ C.①④ D.②④4.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个 D.恰有一个白球;一个白球一个黑球5.在中,,,,则B等于()A.或 B. C. D.以上答案都不对6.已知,且,则()A. B. C. D.7.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2等于A.-10 B.-8 C.-6 D.-48.已知等差数列:1,a1,a2,9;等比数列:-9,b1,b2,b3,-1.则b2(a2-a1)的值为()A.8 B.-8C.±8 D.89.已知,其中,则()A. B. C. D.10.我国古代数学名著《九章算术》第六章“均输”中有这样一个问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”(注:“均输”即按比例分配,此处是指五人所得成等差数列;“钱”是古代的一种计量单位),则分得最少的一个得到()A.钱 B.钱 C.钱 D.1钱二、填空题:本大题共6小题,每小题5分,共30分。11.已知为等差数列,,,,则______.12.已知,则的最大值是____.13.若,则____________.14._________________;15.已知向量,,则与的夹角等于_______.16.设表示不超过的最大整数,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,数列中,若,且.(1)求证:数列是等比数列;(2)设数列的前项和为,求证:.18.已知.(1)求的坐标;(2)设,求数列的通项公式;(3)设,,其中为常数,,求的值.19.设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.20.如图,在直三棱柱中,,为的中点,为的中点.(1)求证:平面;(2)求证:.21.在等差数列中,(Ⅰ)求通项;(Ⅱ)求此数列前30项的绝对值的和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

直接利用等差数列的性质求出结果.【详解】等差数列{an}的前n项和为Sn,若S17=85,则:85,解得:a9=5,所以:a7+a9+a11=3a9=1.故选:B.【点睛】本题考查的知识要点:等差数列的通项公式的应用,及性质的应用,主要考查学生的运算能力和转化能力,属于基础题.2、B【解析】

根据第四象限内点的坐标特征,再根据正弦值、正切值的正负性直接求解即可.【详解】因为点在第四象限,所以有:是第二象限内的角.故选:B【点睛】本题考查了正弦值、正切值的正负性的判断,属于基础题.3、C【解析】

利用面面垂直的判定定理判断①;根据面面平行的判定定理判断②;利用线面垂直和线面平行的性质判断③;利用线面垂直和面面平行的性质判断④【详解】①,,或,又,则成立,故正确②若,,或和相交,并不一定平行于,故错误③若,,则或,若,则并不一定平行于,故错误④若,,,又,成立,故正确综上所述,正确的命题的序号是①④故选【点睛】本题主要考查了命题的真假判断和应用,解题的关键是理解线面,面面平行与垂直的判断定理和性质定理,属于基础题.4、C【解析】

由题意逐一考查所给的事件是否互斥、对立即可求得最终结果.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C成立;在D中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D不成立;本题选择C选项.【点睛】“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.5、C【解析】试题分析:由正弦定理得,得,结合得,故选C.考点:正弦定理.6、D【解析】

首先根据,求得,结合角的范围,利用平方关系,求得,利用题的条件,求得,之后将角进行配凑,使得,利用正弦的和角公式求得结果.【详解】因为,所以,因为,所以.因为,,所以,所以,故选D.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,正弦函数的和角公式,在解题的过程中,注意时刻关注角的范围.7、C【解析】试题分析:有题可知,a1,a3,a4成等比数列,则有,又因为{an}是等差数列,故有,公差d=2,解得;考点:等差数列通项公式‚等比数列性质8、B【解析】a2-a1=d=9-13又b22=b1b因为b2与-9,-1同号,所以b2=-3.所以b2(a2-a1)=-3×8本题选择B选项.9、D【解析】

先根据同角三角函数关系求得,再根据二倍角正切公式得结果.【详解】因为,且,所以,因为,所以,因此,从而,,选D.【点睛】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.10、B【解析】

设所成等差数列的首项为,公差为,利用等差数列前项和公式及通项公式列出方程组,求出首项和公差,进而得出答案.【详解】由题意五人所分钱成等差数列,设得钱最多的为,则公差.所以,则.又,即则,分得最少的一个得到.故选:B【点睛】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由等差数列的前项和公式,代入计算即可.【详解】已知为等差数列,且,,所以,解得或(舍)故答案为【点睛】本题考查了等差数列前项和公式的应用,属于基础题.12、4【解析】

利用对数的运算法则以及二次函数的最值化简求解即可.【详解】,,,则.当且仅当时,函数取得最大值.【点睛】本题主要考查了对数的运算法则应用以及利用二次函数的配方法求最值.13、【解析】故答案为.14、1【解析】

利用诱导公式化简即可得出答案【详解】【点睛】本题考查诱导公式,属于基础题.15、【解析】

由已知向量的坐标求得两向量的模及数量积,代入数量积求夹角公式得答案.【详解】∵(﹣1,),(,﹣1),∴,,则cos,∴与的夹角等于.故答案为:.【点睛】本题考查平面向量的数量积运算,考查了由数量积求向量的夹角,是基础题.16、【解析】

根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【详解】故答案为:【点睛】本题主要考查了三角函数的计算,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】

(1)将代入到函数表达式中,得,两边都倒过来,即可证明数列是等比数列;(2)由(1)得出an的通项公式,然后根据不等式<在求和时进行放缩法的应用,再根据等比数列求和公式进行计算,即可证出.【详解】(1)由函数,在数列中,若,得:,上式两边都倒过来,可得:==﹣2,∴﹣1=﹣2﹣1=﹣1=1(﹣1).∵﹣1=1.∴数列是以1为首项,1为公比的等比数列.(2)由(1),可知:=1n,∴an=,n∈N*.∵当n∈N*时,不等式<成立.∴Sn=a1+a2+…+an===﹣•<.∴.【点睛】本题主要考查数列与函数的综合应用,根据条件推出数列的递推公式,由递推公式推出通项公式与放缩法的应用是解决本题的两个关键点,属于中档题.18、(1);(2);(3)当时,;当或时,.【解析】

(1)利用题中定义结合平面向量加法的坐标运算可得出结果;(2)利用等差数列的求和公式和平面向量加法的坐标运算可得出数列的通项公式;(3)先计算出的表达式,然后分、、三种情况计算出的值.【详解】(1)由题意得;(2);(3).①当时,;②当时,;③当时,.【点睛】本题考查平面向量坐标的线性运算,同时也考查等差数列求和以及数列极限的运算,计算时要充分利用数列极限的运算法则进行求解,综合性较强,属于中等题.19、(I);(II).【解析】

(I)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(II)由(I)可得,进而可利用等比数列求和公式进行求解.【详解】(I)设等差数列的公差为,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2为首项,2为公比的等比数列.∴.∴点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.20、(1)见解析(2)见解析【解析】

(1)连、相交于点,证明四边形为平行四边形,得到,证明平面(2)证明平面推出【详解】证明:(1)如图,连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论