版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市罗店中学2025届数学高一下期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用表示不超过的最大整数(如,).数列满足,若,则的所有可能值的个数为()A.1 B.2 C.3 D.42.已知都是正数,且,则的最小值等于A. B.C. D.3.已知,并且是第二象限的角,那么的值等于()A. B. C. D.4.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,A.815 B.18 C.15.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A. B. C. D.6.在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是()A.①③ B.②④ C.①④ D.②③7.若,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则8.已知直线与直线平行,则实数k的值为()A.-2 B.2 C. D.9.如图,为正方体,下面结论错误的是()A.平面B.C.平面D.异面直线与所成的角为10.在中,,,,则为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.把二进制数化为十进制数是:______.12.已知等比数列的前项和为,,则的值是__________.13.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.14.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.15.已知数列的通项公式为,数列的通项公式为,设,若在数列中,对任意恒成立,则实数的取值范围是_________.16.若关于的不等式的解集为,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点,.(1)若,求直线的方程;(2)若直线与轴交于点,设,,,R,求的值.18.如图,在四边形中,已知,,(1)若,且的面积为,求的面积:(2)若,求的最大值.19.已知数列的前项和为,且满足.(1)求的值;(2)证明是等比数列,并求;(3)若,数列的前项和为.20.若向量=(1,1),=(2,5),=(3,x).(1)若,求x的值;(2)若,求x的值.21.已知所在平面内一点,满足:的中点为,的中点为,的中点为.设,,如图,试用,表示向量.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
数列取倒数,利用累加法得到通项公式,再判断的所有可能值.【详解】两边取倒数:利用累加法:为递增数列.计算:,整数部分为0,整数部分为1,整数部分为2的所有可能值的个数为0,1,2答案选C【点睛】本题考查了累加法求数列和,综合性强,意在考查学生对于新知识的阅读理解能力,解决问题的能力,和计算能力.2、C【解析】
,故选C.3、A【解析】
根据同角三角函数关系,进行求解即可.【详解】因为,故又因为是第二象限的角,故故.故选:A.【点睛】本题考查同角三角函数关系的简单使用,属基础题.4、C【解析】试题分析:开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=m5、B【解析】
利用古典概型概率公式求解即可.【详解】设三件正品分别记为,一件次品记为则从三件正品、一件次品中随机取出两件,取出的产品可能为,共6种情况,其中取出的产品全是正品的有3种所以产品全是正品的概率故选:B【点睛】本题主要考查了利用古典概型概率公式计算概率,属于基础题.6、B【解析】
说法①:可以根据线面平行的判定理判断出本说法是否正确;说法②:根据线面垂直的性质和面面平行的判定定理可以判断出本说法是否正确;说法③:当与相交时,是否在平面内有不共线的三点到平面的距离相等,进行判断;说法④:可以通过反证法进行判断.【详解】①平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知②正确;③若平面内有不共线的三点到平面的距离相等,则与可能平行,也可能相交,不正确;易知④正确.故选B.【点睛】本题考查了线线位置关系、面面位置关系的判断,分类讨论是解题的关键,反证法是经常用到的方程.7、D【解析】
根据不等式的基本性质逐一判断可得答案.【详解】解:A.当时,不成立,故A不正确;B.取,,则结论不成立,故B不正确;C.当时,结论不成立,故C不正确;D.若,则,故D正确.故选:D.【点睛】本题主要考查不等式的基本性质,属于基础题.8、A【解析】
由两直线平行的可得:,运算即可得解.【详解】解:由两直线平行的判定可得:,解得,故选:A.【点睛】本题考查利用两直线平行求参数,属基础题.9、D【解析】
在正方体中与
平行,因此有与平面
平行,A正确;在平面
内的射影垂直于,因此有,B正确;与B同理有与
垂直,从而
平面
,C正确;由知与所成角为45°,D错.故选D.10、D【解析】
利用正弦定理得到答案.【详解】根据正弦定理:即:答案选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、51【解析】110011(2)12、1【解析】
根据等比数列前项和公式,由可得,通过化简可得,代入的值即可得结果.【详解】∵,∴,显然,∴,∴,∴,∴,故答案为1.【点睛】本题主要考查等比数列的前项和公式,本题解题的关键是看出数列的公比的值,属于基础题.13、1【解析】
根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律使问题得到解决.【详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×1=1984,∴当n=1时,第1组的最后一个数为2×1×33=2112,∴2018位于第1组.故答案为1.【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.14、【解析】
利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【点睛】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.15、【解析】
首先分析题意,可知是取和中的最大值,且是该数列中的最小项,结合数列的单调性和数列的单调性可得出或,代入数列的通项公式即可求出实数的取值范围.【详解】由题意可知,是取和中的最大值,且是数列中的最小项.若,则,则前面不会有数列的项,由于数列是单调递减数列,数列是单调递增数列.,数列单调递减,当时,必有,即.此时,应有,,即,解得.,即,得,此时;若,则,同理,前面不能有数列的项,即,当时,数列单调递增,数列单调递减,.当时,,由,即,解得.由,得,解得,此时.综上所述,实数的取值范围是.故答案为:.【点睛】本题考查利用数列的最小项求参数的取值范围,同时也考查了数列中的新定义,解题的关键就是要分析出数列的单调性,利用一些特殊项的大小关系得出不等式组进行求解,考查分析问题和解决问题的能力,属于难题.16、1【解析】
根据二次不等式和二次方程的关系,得到是方程的两根,由根与系数的关系得到的值.【详解】因为关于的不等式的解集为所以是方程的两根,,由根与系数的关系得,解得【点睛】本题考查一元二次不等式和一元二次方程之间的关系,根与系数之间的关系,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)设斜率为,则直线的方程为,利用圆的弦长公式,列出方程求得的值,即可得到直线的方程;(2)当直线的斜率不存在时,根据向量的运算,求得,当直线的斜率存在时,设直线的方程为,联立方程组,利用根与系数的关系,以及向量的运算,求得,得到答案.【详解】(1)当直线的斜率不存在时,,不符合题意;当直线的斜率存在时,设斜率为,则直线的方程为,所以圆心到直线的距离,因为,所以,解得,所以直线的方程为..(2)当直线的斜率不存在时,不妨设,,,因为,,所以,,所以,,所以.当直线的斜率存在时,设斜率为,则直线的方程为:,因为直线与轴交于点,所以.直线与圆交于点,,设,,由得,,所以,;因为,,所以,,所以,,所以.综上,.【点睛】本题主要考查了直线与圆的位置关系的应用,以及向量的坐标运算,其中解答中熟记圆的弦长公式,以及联立方程组,合理利用根与系数的关系和向量的运算是解答的关键,着重考查了推理与运算能力,属于中档试题.18、(1);(2)3【解析】
(1)根据可解出,验证出,从而求得所求面积;(2)设,,在中利用余弦定理构造关于的方程;在中分别利用正余弦定理可得到和,代入可求得;根据三角函数最值可求得的最大值,即可得到结果.【详解】(1)由得:,即(2)设,在中,由正弦定理得:…①由余弦定理得:…②在中,由余弦定理得:将①②代入整理得:当,即时,取最大值【点睛】本题考查解三角形的相关知识,涉及到正弦定理、余弦定理和三角形面积公式的应用;本题中线段长度最值的求解的关键是能够利用正余弦定理构造方程,将问题转化为三角函数最值的求解问题.19、(1)2,6,14;(2)(3)【解析】
(1)通过代入,可求得前3项;(2)利用已知求的方法,求解;(3)首先求得数列的通项公式,将通项分成两部分,一部分利用错位相减法求和,另一部分常数列求和.【详解】(1)当时,,解得;当时,,解得;当时,,解得.(2)当时,两式相减,,且时首项为4,公比为2的等比数列.(3)根据(2)可知,,设,设其前项和为,两式相减可得解得,数列,前项和为,数列的前项和是【点睛】本题考查了已知求的方法,利用错位相减法求和属于基础中档题型.20、(1).(2)1.【解析】
(1)利用向量平行的代数形式得到x的值;(2)由数量积的坐标形式得到x的方程,解之即可.【详解】(1)∵∥,∴2x﹣15=0,解得x=.(2)8﹣=(6,3),∵(8﹣)•=30,∴18+3x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《圆的周长正式》课件
- 人身意外伤害保险课件
- 深圳市福田区农林片区路边临时停车收费管理泊位规划方案公示课件
- 教师劳动合同(2篇)
- 2024屠户生猪代宰与屠宰废弃物资源化利用合同3篇
- 2024年度儿童广告代言项目聘用合同范本2篇
- 2024年度绿色环保产品广告合作与市场拓展合同3篇
- 2025年马鞍山道路货运驾驶员从业资格证考试
- 1.1 《子路、曾晳、冉有、公西华侍坐》(学案)-教案课件-部编高中语文必修下册
- 《电子商务运作体系》课件
- 2023年军队文职-公共科目考试参考试题附带答案
- DB11T 382-2017建设工程监理规程
- 减少老年住院患者口服药缺陷次数的PDCA案例
- 燃油泵及总成试验标准
- 医共体成员单位绩效分配与考核指导方案20206
- 劳务分包的工程施工组织设计方案
- GB/T 9115.3-2000榫槽面对焊钢制管法兰
- GB/T 4310-2016钒
- GB/T 3505-2009产品几何技术规范(GPS)表面结构轮廓法术语、定义及表面结构参数
- GB/T 34542.3-2018氢气储存输送系统第3部分:金属材料氢脆敏感度试验方法
- 陕2022TJ 067 厨卫装配式钢丝网混凝土排气道系统建筑构造图集
评论
0/150
提交评论