版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛平度市2025届高一数学第二学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.矩形中,,若在该矩形内随机投一点,那么使得的面积不大于3的概率是()A. B. C. D.2.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分3.在等比数列中,,,则()A. B.3 C. D.14.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg5.若数列的前n项的和,那么这个数列的通项公式为()A. B.C. D.6.在△中,为边上的中线,为的中点,则A. B.C. D.7.在中,角所对的边分别为,若的面积,则()A. B. C. D.8.设是上的偶函数,且在上是减函数,若且,则()A. B.C. D.与大小不确定9.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.10.在区间上随机取一个数,使得的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知中,的对边分别为,若,则的周长的取值范围是__________.12.和2的等差中项的值是______.13.如图所示,已知点,单位圆上半部分上的点满足,则向量的坐标为________.14.将角度化为弧度:________.15.如图,在边长为的菱形中,,为中点,则______.16.设,满足约束条件,则的最小值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.大豆,古称菽,原产中国,在中国已有五千年栽培历史.2019年春,为响应中国大豆参与世界贸易的竞争,某市农科院积极研究,加大优良品种的培育工作,其中一项基础工作就是研究昼夜温差大小与大豆发芽率之间的关系.为此科研人员分别记录了7天中每天50粒大豆的发芽数得如下数据表格:日期4月3日4月4日4月5日4月6日4月7日4月8日4月9日温差(℃)89101211813发芽数(粒)21252632272033科研人员确定研究方案是:从7组数据中选5组数据求线性回归方程,再用求得的回归方程对剩下的2组数据进行检验.(1)若选取的是4月4日至4月8日五天数据,据此求关于的线性回归方程;(2)若由线性回归方程得到的估计数据与实际数据的误差绝对值均不超过1粒,则认为得到的线性回归方程是可靠的,请检验(1)中回归方程是否可靠?注:.参考数值:,.18.记Sn为等差数列an的前n项和,已知(1)求an(2)求Sn,并求S19.如图所示,在四棱锥P-ABCD中,,,,平面底面ABCD,E和F分别是CD和PC的中点.求证:(1)平面BEF;(2)平面平面PCD.20.已知数列满足=(1)若求数列的通项公式;(2)若==对一切恒成立求实数取值范围.21.已知0<α<π,cos(1)求tanα+(2)求sin2α+1
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先求出的点的轨迹(一条直线),然后由面积公式可知时点所在区域,计算其面积,利用几何概型概率公式计算概率.【详解】设到的距离为,,则,如图,设,则点在矩形内,,,∴所求概率为.故选C.【点睛】本题考查几何概型概率.解题关键是确定符合条件点所在区域及其面积.2、B【解析】
首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.3、C【解析】
根据等比数列的性质求解即可.【详解】因为等比数列,故.故选:C【点睛】本题主要考查了等比数列性质求解某项的方法,属于基础题.4、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.5、D【解析】试题分析:根据前n项和与其通项公式的关系式,an=当n≥2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=2•3n-1.当n=1时,a1=1,不满足上式;所以an=,故答案为an=,选D.考点:本题主要考查数列的求和公式,解题时要根据实际情况注意公式的灵活运用,属于中档题点评:解决该试题的关键是借助公式an=,将前n项和与其通项公式联系起来得到其通项公式的值.6、A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7、B【解析】
利用面积公式及可求,再利用同角的三角函数的基本关系式可求,最后利用余弦定理可求的值.【详解】因为,故,所以,因为,故,又,由余弦定理可得,故.故选B.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.8、A【解析】试题分析:由是上的偶函数,且在上是减函数,所以在上是增函数,因为且,所以,所以,又因为,所以,故选A.考点:函数奇偶性与单调性的综合应用.【方法点晴】本题主要考查了函数的单调性与奇偶性的综合应用,其中解答中涉及函数的单调性和函数奇偶性的应用等知识点,本题的解答中先利用偶函数的图象的对称性得出在上是增函数,然后在利用题设条案件把自变量转化到区间上是解答的关键,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,试题有一定的难度,属于中档试题.9、B【解析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.10、A【解析】则,故概率为.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】中,由余弦定理可得,∵,∴,化简可得.∵,∴,解得(当且仅当时,取等号).故.再由任意两边之和大于第三边可得,故有,故的周长的取值范围是,故答案为.点睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意两边之和大于第三边求得,由此求得△ABC的周长的取值范围.12、【解析】
根据等差中项性质求解即可【详解】设等差中项为,则,解得故答案为:【点睛】本题考查等差中项的求解,属于基础题13、【解析】
设点,由和列方程组解出、的值,可得出向量的坐标.【详解】设点的坐标为,则,由,得,解得,因此,,故答案为.【点睛】本题考查向量的坐标运算,解题时要将一些条件转化为与向量坐标相关的等式,利用方程思想进行求解,考查运算求解能力,属于中等题.14、【解析】
根据角度和弧度的互化公式求解即可.【详解】.故答案为:.【点睛】本题考查角度和弧度的互化公式,属于基础题.15、【解析】
选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.16、1【解析】
根据不等式组,画出可行域,数形结合求解即可.【详解】由题可知,可行域如下图所示:容易知:,可得:,结合图像可知,的最小值在处取得,则.故答案为:1.【点睛】本题考查线性规划的基础问题,只需作出可行域,数形结合即可求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)(1)中回归方程是可靠的.【解析】
(1)运用已知题中所给的数值,结合所给的计算公式、数表提供的数据求得与的值,进而写出线线回归方程;(2)在(1)中求得的线性回归方程中,分别取x=8与13求得y值,进一步求得残差得结论.【详解】因为,.,所以,.因此关于的线性回归方程;(2)取x=8,得,此时;取x=13,得,此时∴(1)中回归方程是可靠的.【点睛】本题考查线性回归方程的求法,考查数学运算能力,属于基础题.18、(1)an=2n-12;(2)Sn【解析】
(1)设等差数列an的公差为d,根据题意求出d(2)根据等差数列的前n项和公式先求出Sn,再由an=2n-12≥0【详解】(1)因为数列an为等差数列,设公差为d由a3=-6,a6=0所以an(2)因为Sn为等差数列an的前所以Sn由an=2n-12≥0得所以当n=5或n=6时,【点睛】本题主要考查等差数列,熟记通项公式以及前n项和公式即可,属于常考题型.19、(2)证明见解析(2)证明见解析【解析】
(1)连接,交于,结合平行四边形的性质可得,再由线面平行的判定定理,即可得证(2)运用面面垂直的性质定理可得平面,推得,,,再由线面垂直的判定定理和吗垂直的判定定理,即可得证.【详解】证明:(1)连接,交于,可得四边形为平行四边形,且为的中点,可得为的中位线,可得,平面,面,可得面;(2)平面底面,,可得平面,即有,,可得,由,,可得四边形为矩形,即有,又,,可得,且所以有平面,而平面,则平面平面.【点睛】本题考查线面平行和面面垂直的判定,注意运用线线平行和线面垂直的判定定理,考查推理能力,属于中档题.20、(1)=;(2).【解析】
(1)由,结合可得数列为等差数列,进而可得所求;(2)由得,利用累加法并结合等比数列的前项和公式求出,化简得,再利用数列的单调性求出的最大值即可得出结论.【详解】(1)由,可得=.∴数列是首项为1,公差为4的等差数列,∴.(2)由及,得=,∴,∴,又满足上式,∴.∵对一切恒成立,即对一切恒成立,∴对一切恒成立.又数列为单调递减数列,∴,∴,∴实数取值范围为.【点睛】本题主要考查等差数列与等比数列的通项公式与前项和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《工程伦理》大二题集
- 平面设计 毕业论文
- 南宁2024年小学六年级英语第二单元期中试卷
- 2024-2025学年苏科版物理九年级上学期期中模拟测试卷(二)
- 2024年10版小学五年级英语第五单元期中试卷
- 2024年非机械驱动车辆项目投资申请报告代可行性研究报告
- 2024-2025学年高一上学期英语语法填空每日一练4(2篇含解析)
- 2024年醌类项目资金需求报告代可行性研究报告
- 2024年院前急救信息系统项目投资申请报告代可行性研究报告
- 【北师】期中模拟卷01【1-5章】
- 市政道路监理规划方案及实施工作细则
- 2024年档案管理中级考试试卷及答案发布
- 外国新闻传播史 课件 第二十章 澳大利亚的新闻传播事业
- 妊娠期及产褥期静脉血栓栓塞症预防和诊治试题及答案
- 好的六堡茶知识讲座
- 环境科学大学生生涯发展报告
- 钢筋优化技术创效手册(2022年)
- 医学课件指骨骨折
- 酒店式公寓方案
- 二年级下册语文课件-作文指导:13-通知(23张PPT) 部编版
- 同先辈比我们身上少了什么
评论
0/150
提交评论