河南省开封市兰考县等五县联考2025届高一数学第二学期期末考试试题含解析_第1页
河南省开封市兰考县等五县联考2025届高一数学第二学期期末考试试题含解析_第2页
河南省开封市兰考县等五县联考2025届高一数学第二学期期末考试试题含解析_第3页
河南省开封市兰考县等五县联考2025届高一数学第二学期期末考试试题含解析_第4页
河南省开封市兰考县等五县联考2025届高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省开封市兰考县等五县联考2025届高一数学第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则()A.2 B. C.4 D.2.如图,在四棱锥中,底面为平行四边形,,,,,且平面,为的中点,则下列结论错误的是()A. B.C.平面平面 D.三棱锥的体积为3.已知正数组成的等比数列的前8项的积是81,那么的最小值是()A. B. C.8 D.64.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角5.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.6.函数的最小正周期是()A. B. C. D.7.如图为A、B两名运动员五次比赛成绩的茎叶图,则他们的平均成绩和方差的关系是()A., B.,C., D.,8.在ΔABC中,若,则=()A.6 B.4 C.-6 D.-49.设,则比多了()项A. B. C. D.10.已知集合,,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.________.12.平面⊥平面,,,,直线,则直线与的位置关系是___.13.若无穷数列的所有项都是正数,且满足,则______.14.已知数列是等比数列,若,,则公比________.15.一组数据2,4,5,,7,9的众数是7,则这组数据的中位数是__________.16.已知,,且,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列中,,.(1)求数列的通项公式;(2)设,求的值.18.已知函数.(1)求函数的最小正周期;(2)求函数的最小值及相应的值.19.已知是夹角为的单位向量,且,.(1)求;(2)求与的夹角.20.已知向量,,函数.(1)求函数的单调递增区间;(2)在中,内角、、所对边的长分别是、、,若,,,求的面积.21.在中,内角的对边分别为,且.(1)求角;(2)若,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先求出的坐标,再利用向量的模的公式求解.【详解】由题得=(0,4)所以.故选C【点睛】本题主要考查向量的坐标的求法和向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、B【解析】

根据余弦定理可求得,利用勾股定理证得,由线面垂直性质可知,利用线面垂直判定定理可得平面,利用线面垂直性质可知正确;假设正确,由和假设可证得平面,由线面垂直性质可知,从而得到,显然错误,则错误;由面面垂直判定定理可证得正确;由可求得三棱锥体积,知正确,从而可得选项.【详解】,,平面,平面又平面,平面平面,则正确;若,又且平面,平面平面又,与矛盾,假设错误,则错误;平面,平面又平面平面平面,则正确;为中点,,则正确本题正确选项:【点睛】本题考查立体几何中相关命题的判断,涉及到线面垂直的判定与性质定理的应用、面面垂直关系的判定、三棱锥体积的求解等知识,是对立体几何部分的定理的综合考查,关键是能够准确判定出图形中的线面垂直关系.3、A【解析】

利用等比数列的通项公式和均值不等式可得结果.【详解】由由为正项数列,可知再由均值不等式可知所以(当且仅当时取等号)故选:A【点睛】本题主要考查等比数列的通项公式及均值不等式,属基础题.4、C【解析】

由题意,可知,所以角和角表示终边相同的角,即可得到答案.【详解】由题意,可知,所以角和角表示终边相同的角,又由表示第三象限角,所以是第三象限角,故选C.【点睛】本题主要考查了象限角的表示和终边相同角的表示,其中解答中熟记终边相同角的表示是解答本题的关键,着重考查了推理与计算能力,属于基础题.5、A【解析】

由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【详解】的最小角为角,则故选:【点睛】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.6、C【解析】

根据三角函数的周期公式,进行计算,即可求解.【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.7、D【解析】

根据题中数据,直接计算出平均值与方差,即可得出结果.【详解】由题中数据可得,,,所以;又,,所以.故选D【点睛】本题主要考查平均数与方差的比较,熟记公式即可,属于基础题型.8、C【解析】

向量的点乘,【详解】,选C.【点睛】向量的点乘,需要注意后面乘的是两向量的夹角的余弦值,本题如果直接计算的话,的夹角为∠BAC的补角9、C【解析】

可知中共有项,然后将中的项数减去中的项数即可得出答案.【详解】,则中共有项,所以,比多了的项数为.故选:C.【点睛】本题考查数学归纳法的应用,解题的关键就是计算出等式中的项数,考查分析问题和解决问题的能力,属于中等题.10、C【解析】分析:由题意先解出集合A,进而得到结果。详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【详解】.故答案为:.【点睛】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12、【解析】

利用面面垂直的性质定理得到平面,又直线,利用线面垂直性质定理得.【详解】在长方体中,设平面为平面,平面为平面,直线为直线,由于,,由面面垂直的性质定理可得:平面,因为,由线面垂直的性质定理,可得.【点睛】空间中点、线、面的位置关系问题,一般是利用线面平行或垂直的判定定理或性质定理进行求解.13、【解析】

先由作差法求出数列的通项公式为,即可计算出,然后利用常用数列的极限即可计算出的值.【详解】当时,,可得;当时,由,可得,上式下式得,得,也适合,则,.所以,.因此,.故答案为:.【点睛】本题考查利用作差法求数列通项,同时也考查了数列极限的计算,考查计算能力,属于中等题.14、【解析】

利用等比数列的通项公式即可得出.【详解】∵数列是等比数列,若,,则,解得,即.故答案为:【点睛】本题考查了等比数列的通项公式,考查了计算能力,属于基础题.15、6【解析】

由题得x=7,再利用中位数的公式求这组数据的中位数.【详解】因为数据2,4,5,,7,9的众数是7,所以,则这组数据的中位数是.故答案为6【点睛】本题主要考查众数的概念和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解析】

由,可得,然后利用基本不等式可求出最小值.【详解】因为,所以,当且仅当,时取等号.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(Ⅰ)设等差数列的公差为.由已知得,解得.所以.(Ⅱ)由(Ⅰ)可得.所以.考点:1、等差数列通项公式;2、分组求和法.18、(1)(2)的最小值为,此时.【解析】

通过倍角公式,把化成标准形式,研究函数的相关性质(周期性,单调性,奇偶性,对称性,最值及最值相对于的变量),从而本题能顺利完成【详解】(1)因为.所以函数的最小正周期为.(2)当时,,此时,,,所以的最小值为,此时.【点睛】该类型考题关键是将化成性质,只有这样,我们才能很好的去研究他的性质.19、(1)(2)【解析】试题分析:(1)根据题知,由向量的数量积公式进行运算即可,注意,在去括号的向量运算过程中可采用多项式的运算方法;(2)根据向量数量积公式,可先求出的值,又,从而可求出的值.试题解析:(1)==(2)20、(1)的增区间是,(2)【解析】

(1)利用平面向量数量积的坐标表示公式、二倍角的正弦公式、余弦二倍角的降幂公式、以及辅助角公式可以函数的解析式化为正弦型函数解析式的形式,最后利用正弦型函数的单调性求出函数的单调递增区间;(2)根据(1)所得的结论和,可以求出角的值,利用三角形内角和定理可以求出角的值,再运用正弦定理可得出的值,最后利用三角形面积公式可以求出的面积..【详解】(1)令,解得∴的增区间是,(2)∵∴解得又∵∴中,由正弦定理得∴【点睛】本题考查了平面向量数量积的坐标表示公式,考查了二倍角的正弦公式、余弦二倍角的降幂公式、以及辅助角公式,考查了正弦定理和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论