北京市第十二中2025届高一下数学期末经典试题含解析_第1页
北京市第十二中2025届高一下数学期末经典试题含解析_第2页
北京市第十二中2025届高一下数学期末经典试题含解析_第3页
北京市第十二中2025届高一下数学期末经典试题含解析_第4页
北京市第十二中2025届高一下数学期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市第十二中2025届高一下数学期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数图像的一个对称中心是()A. B. C. D.2.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为A.; B.C. D.3.函数(其中为自然对数的底数)的图象大致为()A. B. C. D.4.已知等差数列的前项和为,若,则的值为A.10 B.15 C.25 D.305.用数学归纳法证明这一不等式时,应注意必须为()A. B., C., D.,6.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除:(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用…等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额元(含税)…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其它专项附加扣除),则他该月应交纳的个税金额为()A.570 B.890 C.1100 D.19007.如图,正方形中,分别是的中点,若则()A. B. C. D.8.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用表示,方差分别用表示,则A. B.C. D.9.圆心为且过原点的圆的方程是()A.B.C.D.10.在中,若,,,则()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,它的值域是__________.12.已知向量,,若向量与垂直,则__________.13.已知向量,,则在方向上的投影为______.14.已知、、分别是的边、、的中点,为的外心,且,给出下列等式:①;②;③;④其中正确的等式是_________(填写所有正确等式的编号).15.关于函数有下列命题:①由可得必是的整数倍;②的图像关于点对称,其中正确的序号是____________.16.若、分别是方程的两个根,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.18.数列中,且满足.(1)求数列的通项公式;(2)设,求;⑶设,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由.19.如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥P-ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).20.某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度为,行车道总宽度为,侧墙面高,为,弧顶高为.()建立适当的直角坐标系,求圆弧所在的圆的方程.()为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有.请计算车辆通过隧道的限制高度是多少.21.已知函数,且.(1)求的值;(2)若在上有且只有一个零点,,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由题得,解出x的值即得函数图像的一个对称中心.【详解】由题得,所以,所以图像的对称中心是.当k=1时,函数的对称中心为.故选B【点睛】本题主要考查三角函数图像的对称中心的求法,意在考查学生对该知识的理解掌握水平,属于基础题.2、A【解析】

试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.3、C【解析】

由题意,可知,即为奇函数,排除,,又时,,可排除D,即可选出正确答案.【详解】由题意,函数定义域为,且,即为奇函数,排除,,当时,,,即时,,可排除D,故选C.【点睛】本题考查了函数图象的识别,考查了函数奇偶性的运用,属于中档题.4、B【解析】

直接利用等差数列的性质求出结果.【详解】等差数列{an}的前n项和为Sn,若S17=85,则:85,解得:a9=5,所以:a7+a9+a11=3a9=1.故选:B.【点睛】本题考查的知识要点:等差数列的通项公式的应用,及性质的应用,主要考查学生的运算能力和转化能力,属于基础题.5、D【解析】

根据题意验证,,时,不等式不成立,当时,不等式成立,即可得出答案.【详解】解:当,,时,显然不等式不成立,当时,不等式成立,故用数学归纳法证明这一不等式时,应注意必须为,故选:.【点睛】本题考查数学归纳法的应用,属于基础题.6、B【解析】

根据题意,分段计算李某的个人所得税额,即可求解,得到答案.【详解】由题意,李某月应纳税所得额(含税)为元,不超过3000的部分的税额为元,超过3000元至12000元的部分税额为元,所以李某月应缴纳的个税金额为元.故选:B.【点睛】本题主要考查了分段函数的实际应用与函数值的计算问题,其中解答中认真审题,合理利用分段函数进行求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7、D【解析】试题分析:取向量作为一组基底,则有,所以又,所以,即.8、D【解析】

分别计算平均值和方差,比较得到答案.【详解】由题意可得,,.故.故答案选D【点睛】本题考查了数据的平均值和方差的计算,意在考查学生的计算能力.9、D【解析】试题分析:设圆的方程为,且圆过原点,即,得,所以圆的方程为.故选D.考点:圆的一般方程.10、A【解析】

利用正弦定理列出关系式,把与代入得出与的关系式,再与已知等式联立求出即可.【详解】∵在中,,,,∴由正弦定理得:,即,联立解得:.故选:A.【点睛】本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由反余弦函数的值域可求出函数的值域.【详解】,,因此,函数的值域为.故答案为:.【点睛】本题考查反三角函数值域的求解,解题的关键就是依据反余弦函数的值域进行计算,考查计算能力,属于基础题.12、【解析】,所以,解得.13、【解析】

由平面向量投影的定义可得出在方向上的投影为,从而可计算出结果.【详解】设平面向量与的夹角为,则在方向上的投影为.故答案为:.【点睛】本题考查平面向量投影的计算,熟悉平面向量投影的定义是解题的关键,考查计算能力,属于基础题.14、①②④.【解析】

根据向量的中点性质与向量的加法运算,可判断①②③.【详解】、、分别是的边、、的中点,为的外心,且,设三条中线交点为G,如下图所示:对于①,由三角形中线性质及向量加法运算可知,所以①正确;对于②,,所以②正确;对于③,,所以③错误;对于,由外心性质可知,所以故正确.综上可知,正确的为①②④.故答案为:①②④.【点睛】本题考查了向量的线性运算,三角形外心的性质及应用,属于基础题.15、②【解析】

对①,可令求出的通式,再进行判断;对②,将代入检验是否为0即可【详解】对①,令得,可令,,①错;对②,当时,,②对故正确序号为:②故答案为②【点睛】本题考查三角函数的基本性质,属于基础题16、【解析】

利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2),.【解析】

(1)根据数量积和模的坐标运算计算;(2)由可得出,然后由二次函数性质求得最小值.【详解】(1)由题意及,同理,.(2)∵,∴,∴,即,又,∴时,.【点睛】本题考查向量的数量积与模的坐标运算,考查向量垂直与数量积的关系.掌握数量积的性质是解题基础.其中.18、(1);(2)(3)7.【解析】

(1)由可得为等差数列,从而可得数列的通项公式;(2)先判断时数列的各项为正数,时数列各项为负数,分两种情况讨论分别利用等差数列求和公式求解即可;(3)求得利用裂项相消法求得,由可得结果.【详解】(1)由题意,,为等差数列,设公差为,由题意得,.(2)若时,时,,故.(3),若对任意成立,的最小值是,对任意成立,的最大整数值是7,即存在最大整数使对任意,均有【点睛】本题主要考查等差数列的通项公式与求和公式,以及裂项相消法求和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.19、(1);(2).【解析】

(1),三棱锥P-ABC的体积为.(2)取PB的中点E,连接DE、AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,异面直线BC与AD所成的角的大小是.20、(1);(2)3.5【解析】试题分析:(1)建立直角坐标系,设圆一般方程,根据三点E,F,M坐标解出参数(2)根据题意求出圆上横坐标等于c点横坐标的纵坐标,再根据要求在竖直方向上的高度之差至少要有得车辆通过隧道的限制高度试题解析:(1)以所在直线为轴,以所在直线为轴,以1m为单位长度建立直角坐标系,则,,,由于所求圆的圆心在轴上,所以设圆的方程为,因为,在圆上,所以,解得,,所以圆的方程为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论