湖北省武汉市钢城四中2025届高一数学第二学期期末统考模拟试题含解析_第1页
湖北省武汉市钢城四中2025届高一数学第二学期期末统考模拟试题含解析_第2页
湖北省武汉市钢城四中2025届高一数学第二学期期末统考模拟试题含解析_第3页
湖北省武汉市钢城四中2025届高一数学第二学期期末统考模拟试题含解析_第4页
湖北省武汉市钢城四中2025届高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市钢城四中2025届高一数学第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两点,若点是圆上的动点,则面积的最大值为()A.13 B.3 C. D.2.设直线l与平面平行,直线m在平面上,那么()A.直线l不平行于直线m B.直线l与直线m异面C.直线l与直线m没有公共点 D.直线l与直线m不垂直3.两条直线和,,在同一直角坐标系中的图象可能是()A. B.C. D.4.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则5.数列中,,则数列的极限值()A.等于0 B.等于1 C.等于0或1 D.不存在6.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.7.圆的圆心坐标和半径分别是()A.,2 B.,1 C.,2 D.,18.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)

4

2

3

5

销售额(万元)

49

26

39

54

根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元9.设函数,,其中,.若,且的最小正周期大于,则()A., B.,C., D.,10.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,分别是角的对边,已知成等比数列,且,则的值为________.12.设,向量,,若,则__________.13.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________14.已知圆及点,若满足:存在圆C上的两点P和Q,使得,则实数m的取值范围是________.15.两圆,相切,则实数=______.16.在圆心为,半径为的圆内接中,角,,的对边分别为,,,且,则的面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和,且满足:,.(1)求数列的通项公式;(2)若,求数列的前项和.18.已知点,,曲线任意一点满足.(1)求曲线的方程;(2)设点,问是否存在过定点的直线与曲线相交于不同两点,无论直线如何运动,轴都平分,若存在,求出点坐标,若不存在,请说明理由.19.已知等差数列的前n项和为,且,.(1)求的通项公式;(2)若,且,,成等比数列,求k的值.20.设函数,其中,.(1)求的周期及单调递减区间;(2)若关于的不等式在上有解,求实数的取值范围.21.设常数,函数.(1)若为偶函数,求的值;(2)若,求方程在区间上的解.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先求出直线方程,然后计算出圆心到直线的距离,根据面积的最大时,以及高最大的条件,可得结果.【详解】由,利用直线的截距式所以直线方程为:即由圆,即所以圆心为,半径为则圆心到直线的距离为要使面积的最大,则圆上的点到最大距离为所以面积的最大值为故选:C【点睛】本题考查圆与直线的几何关系以及点到直线的距离,属基础题.2、C【解析】

由题设条件,得到直线与直线异面或平行,进而得到答案.【详解】由题意,因为直线与平面平行,直线在平面上,所以直线与直线异面或平行,即直线与直线没有公共点,故选C.【点睛】本题主要考查了空间中直线与直线只见那的位置关系的判定及应用,以及直线与平面平行的应用,着重考查了推理与论证能力,属于基础题.3、A【解析】

由方程得出直线的截距,逐个选项验证即可.【详解】由截距式方程可得直线的横、纵截距分别为,直线的横、纵截距分别为选项A,由的图象可得,可得直线的截距均为正数,故A正确;选项B,只有当时,才有直线平行,故B错误;选项C,只有当时,才有直线的纵截距相等,故C错误;选项D,由的图象可得,可得直线的横截距为正数,纵截距为负数,由图像不对应,故D错误;故选:A【点睛】本题考查了直线的截距式方程,需理解截距的定义,属于基础题.4、C【解析】

依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.5、B【解析】

根据题意得到:时,,再计算即可.【详解】因为当时,.所以.故选:B【点睛】本题主要考查数列的极限,解题时要注意公式的选取和应用,属于中档题.6、A【解析】

先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.7、B【解析】

将圆的一般方程配成标准方程,由此求得圆心和半径.【详解】由,得,所以圆心为,半径为.【点睛】本小题主要考查圆的一般方程化为标准方程,考查圆心和半径的求法,属于基础题.8、B【解析】

试题分析:,∵数据的样本中心点在线性回归直线上,回归方程中的为1.4,∴42=1.4×2.5+a,∴=1.1,∴线性回归方程是y=1.4x+1.1,∴广告费用为6万元时销售额为1.4×6+1.1=3.5考点:线性回归方程9、B【解析】

根据周期以及最值点和平衡位置点先分析的值,然后带入最值点计算的值.【详解】因为,,所以,则,所以,即,故;则,代入可得:且,所以.故选B.【点睛】(1)三角函数图象上,最值点和平衡位置的点之间相差奇数个四分之一周期的长度;(2)计算的值时,注意选用最值点或者非特殊位置点,不要选用平衡位置点(容易多解).10、C【解析】

利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用成等比数列得到,再利用余弦定理可得,而根据正弦定理和成等比数列有,从而得到所求之值.【详解】∵成等比数列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因为,所以,故.故答案为.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.12、【解析】从题设可得,即,应填答案.13、【解析】

观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.14、【解析】

设出点P、Q的坐标,利用平面向量的坐标运算以及两圆相交的条件求出实数m的取值范围.【详解】设点,由得,由点在圆上,得,又在圆上,,与有交点,则,解得故实数m的取值范围为.故答案为:【点睛】本题考查了向量的坐标运算、利用圆与圆的位置关系求参数的取值范围,属于中档题.15、0,±2【解析】

根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【点睛】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.16、【解析】

已知条件中含有这一表达式,可以联想到余弦定理进行条件替换;利用同弧所对圆心角为圆周角的两倍,先求出角的三角函数值,再求的正弦值,进而即可得解.【详解】,,在中,代入(1)式得:,整理得:圆周角等于圆心角的两倍,,(1)当时,,,.(1)当时,,点在的外面,此时,,.【点睛】本题对考生的计算能力要求较高,对解三角形和平面几何知识进行综合考查.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)当时,可求出,当时,利用可求出是以2为首项,2为公比的等比数列,故而可求出其通项公式;(2)由裂项相消可求出其前项和.试题解析:(1)依题意:当时,有:,又,故,由①当时,有②,①-②得:化简得:,∴是以2为首项,2为公比的等比数列,∴.(2)由(1)得:,∴∴18、(1);(2)【解析】

(1)设,再根据化简求解方程即可.(2)设过定点的直线方程为,根据轴平分可得.再联立直线与圆的方程,化简利用韦达定理求解中参数的关系,进而求得定点即可.【详解】(1)设,因为,故,即,整理可得.(2)当直线与轴垂直,且在圆内时,易得关于轴对称,故必有轴平分.当直线斜率存在时,设过定点的直线方程为.设.联立,.因为无论直线如何运动,轴都平分,故,即,所以,.所以代入韦达定理有,化简得.故,恒过定点.即.【点睛】本题主要考查了轨迹方程的求解方法以及联立直线与圆的方程,利用韦达定理代入题中所给的关系式,化简求直线中参数的关系求得定点的问题.属于难题.19、(1);(2)4.【解析】

(1)设等差数列的公差为d,根据等差数列的通项公式,列出方程组,即可求解.(2)由(1),求得,再根据,,成等比数列,得到关于的方程,即可求解.【详解】(1)设等差数列的公差为d,由题意可得:,解得.所以数列的通项公式为.(2)由知,因为,,成等比数列,所以,即,解得.【点睛】本题主要考查了等差数列的通项公式,以及前n项和公式的应用,其中解答中熟记等差数列的通项公式和前n项和公式,列出方程准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1),;(2)【解析】

(1)利用坐标形式下向量的数量积运算以及二倍角公式、辅助角公式将化简为的形式,根据周期计算公式以及单调性求解公式即可得到结果;(2)分析在的值域,根据能成立的思想得到与满足的不等关系,求解出的范围即可.【详解】(1)∵,∴,∴的周期为,令,则,的单调递减区间为(2)∵,∴,在上递增,在上递减,且,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论