2025届陕西省渭南市蒲城县高一下数学期末经典模拟试题含解析_第1页
2025届陕西省渭南市蒲城县高一下数学期末经典模拟试题含解析_第2页
2025届陕西省渭南市蒲城县高一下数学期末经典模拟试题含解析_第3页
2025届陕西省渭南市蒲城县高一下数学期末经典模拟试题含解析_第4页
2025届陕西省渭南市蒲城县高一下数学期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省渭南市蒲城县高一下数学期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知网格纸的各个小格均是边长为一个单位的正方形,一个几何体的三视图如图中粗线所示,则该几何体的表面积为()A. B. C. D.2.下列函数中,在区间上为增函数的是A. B.C. D.3.若圆上至少有三个不同的点到直线的距离为,则直线的斜率的取值范围是()A. B.C. D.4.某几何体的三视图如图所示,则该几何体的体积为()A.6 B.4C. D.5.设的内角所对边分别为.则该三角形()A.无解 B.有一解 C.有两解 D.不能确定6.某校进行了一次消防安全知识竞赛,参赛学生的得分经统计得到如图的频率分布直方图,若得分在的有60人,则参赛学生的总人数为()A.100 B.120 C.150 D.2007.圆心为且过原点的圆的方程是()A.B.C.D.8.底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥称为正四棱锥.如图,在正四棱锥中,底面边长为1.侧棱长为2,E为PC的中点,则异面直线PA与BE所成角的余弦值为()A. B. C. D.9.已知,则()A. B. C. D.10.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域是__________.12.已知变量之间满足线性相关关系,且之间的相关数据如下表所示:_____.12340.13.1413.已知数列的前n项和,则数列的通项公式是______.14.已知向量,向量,若与垂直,则__________.15.若x、y满足约束条件,则的最大值为________.16.如图所示,隔河可以看到对岸两目标,但不能到达,现在岸边取相距的两点,测得(在同一平面内),则两目标间的距离为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;18.已知数列是等差数列,数列是等比数列,且,记数列的前项和为,数列的前项和为.(1)若,求序数的值;(2)若数列的公差,求数列的公比及.19.在中,D是线段AB上靠近B的一个三等分点,E是线段AC上靠近A的一个四等分点,,设,.(1)用,表示;(2)设G是线段BC上一点,且使,求的值.20.已知公差不为0的等差数列{an}满足a3=9,a(1)求{a(2)设数列{bn}满足bn=1n(21.已知数列的首项,其前n项和为满足.(1)数列的通项公式;(2)设,求数列的前n项和表达式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据三视图还原几何体即可.【详解】由三视图可知,该几何体为一个圆柱内切了一个圆锥,圆锥侧面积为,圆柱上底面积为,圆柱侧面积为,.所以选择B【点睛】本题主要考查了三视图,根据三视图还原几何体常用的方法有:在正方体或者长方体中切割.属于中等题.2、A【解析】试题分析:对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.3、C【解析】

作出图形,设圆心到直线的距离为,利用数形结合思想可知,并设直线的方程为,利用点到直线的距离公式可得出关于的不等式,解出即可.【详解】如下图所示:设直线的斜率为,则直线的方程可表示为,即,圆心为,半径为,由于圆上至少有三个不同的点到直线的距离为,所以,即,即,整理得,解得,因此,直线的斜率的取值范围是.故选:C.【点睛】本题考查直线与圆的综合问题,解题的关键就是确定圆心到直线距离所满足的不等式,并结合点到直线的距离公式来求解,考查数形结合思想的应用,属于中等题.4、A【解析】该立方体是正方体,切掉一个三棱柱,所以体积为,故选A。点睛:本题考查三视图还原,并求体积。此类题关键就是三视图的还原,还原过程中,本题采取切割法处理,有图可知,该立方体应该是正方体进行切割产生的,所以我们在画图的过程在,对正方体进行切割比较即可。5、C【解析】

利用正弦定理以及大边对大角定理求出角,从而判断出该三角形解的个数.【详解】由正弦定理得,所以,,,,或,因此,该三角形有两解,故选C.【点睛】本题考查三角形解的个数的判断,解题时可以充分利用解的个数的等价条件来进行判断,具体来讲,在中,给定、、,该三角形解的个数判断如下:(1)为直角或钝角,,一解;,无解;(2)为锐角,或,一解;,两解;,无解.6、C【解析】

根据频率分布直方图求出得分在的频率,即可得解.【详解】根据频率分布直方图可得:得分在的频率0.35,得分在的频率0.3,得分在的频率0.2,得分在的频率0.1,所以得分在的频率0.05,得分在的频率为0.4,有60人,所以参赛学生的总人数为60÷0.4=150人.故选:C【点睛】此题考查根据频率分布直方图求某组的频率,根据频率分布直方图的特征计算小矩形的面积,根据总面积之和为1计算未知数,结合频率频数计算总人数.7、D【解析】试题分析:设圆的方程为,且圆过原点,即,得,所以圆的方程为.故选D.考点:圆的一般方程.8、B【解析】

可采用建立空间直角坐标系的方法来求两条异面直线所成的夹角,【详解】如图所示,以正方形ABCD的中心为坐标原点,DA方向为x轴,AB方向为y轴,OP为z轴,建立空间直角坐标系,,,由几何关系可求得,,,,为中点,,,,答案选B.【点睛】解决异面直线问题常用两种基本方法:异面直线转化成共面直线、空间向量建系法9、C【解析】

根据特殊值排除A,B选项,根据单调性选出C,D选项中的正确选项.【详解】当时,,故A,B两个选项错误.由于,故,所以C选项正确,D选项错误.故本小题选C.【点睛】本小题主要考查三角函数值,考查对数函数和指数函数的单调性,属于基础题.10、D【解析】

用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据反余弦函数的性质,可得函数在单调递减函数,代入即可求解.【详解】由题意,函数的性质,可得函数在单调递减函数,又由,所以函数在的值域为.故答案为:.【点睛】本题主要考查了反余弦函数的单调性的应用,其中解答中熟记反余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】

根据回归直线方程过样本点的中心,代入数据即可计算出的值.【详解】因为,,所以,解得.故答案为:.【点睛】本题考查根据回归直线方程过样本点的中心求参数,难度较易.13、【解析】

时,,利用时,可得,最后验证是否满足上式,不满足时候,要写成分段函数的形式.【详解】当时,,当时,=,又时,不适合,所以.【点睛】本题考查了由求,注意使用求时的条件是,所以求出后还要验证适不适合,如果适合,要将两种情况合成一种情况作答,如果不适合,要用分段函数的形式作答.属于中档题.14、;【解析】

由计算可得.【详解】,∵与垂直,∴,.故答案为-1.【点睛】本题考查向量垂直的坐标运算.由向量垂直得其数量积为0,本题属于基础题.15、18【解析】

先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.16、【解析】

在中,在中,分别由正弦定理求出,,在中,由余弦定理可得解.【详解】由图可得,在中,由正弦定理可得,在中,由正弦定理可得,在中,由余弦定理可得:.故答案为:【点睛】此题考查利用正余弦定理求解三角形,根据已知边角关系建立等式求解,此题求AB的长度可在多个三角形中计算,恰当地选择可以减少计算量.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;【解析】

(1)要证BD⊥平面PAC,只需在平面PAC上找到两条直线跟BD垂直即证,显然,从平面中可证,即证.(2)要证明平面PAB⊥平面PAE,可证平面即可.【详解】(1)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(2)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.18、(1);(2),.【解析】

(1)先设等差数列的公差为,根据题中条件,求出公差,再由通项公式,得到,即可求出结果;(2)先由题意求出,得到等比数列的公比,再由等比数列的求和公式,即可得出结果.【详解】(1)设等差数列的公差为,因为,,所以,解得:;又,所以,即,解得:;(2)因为数列的公差,,所以;因此等比数列的公比为,所以其前项和为.【点睛】本题主要考查等差数列与等比数列的综合,熟记通项公式与求和公式即可,属于常考题型.19、(1)(2)【解析】

(1)依题意可得、,再根据,计算可得;(2)设存在实数,使得,由因为,所以存在实数,使,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D是线段AB上靠近B的一个三等分点,所以.因为E是线段AC上靠近A的一个四等分点,所以,所以.因为,所以,则.又,.所以.(2)因为G是线段BC上一点,所以存在实数,使得,则因为,所以存在实数,使,即,整理得解得,故.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.20、(1)an=4n-3【解析】

(1)根据条件列方程组,求出首项和公差即可得出通项公式;(2)利用裂项相消法求和.【详解】(1)设等差数列an的公差为d(d≠0)a1解得d=4或d=0(舍去),a1∴a(2)∵b∴S=1【点睛】本题考查了等差数列的通项公式,考查了利用裂项相消进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论