版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省西南三校合作体2025届高一下数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则2.设是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,,则B.若,,则C.若,,则是异面直线D.若,,,则3.直线x+2y﹣3=0与直线2x+ay﹣1=0垂直,则a的值为()A.﹣1 B.4 C.1 D.﹣44.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.1,0.2,0.3,0.4,则下列说法正确的是A.A+B与C是互斥事件,也是对立事件 B.B+C与D不是互斥事件,但是对立事件C.A+C与B+D是互斥事件,但不是对立事件 D.B+C+D与A是互斥事件,也是对立事件5.已知锐角满足,则()A. B. C. D.6.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10107.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形8.向量,,,满足条件.,则A. B. C. D.9.正方体中,异面直线与BC所成角的大小为()A. B. C. D.10.平面与平面平行的充分条件可以是()A.内有无穷多条直线都与平行B.直线,,且直线a不在内,也不在内C.直线,直线,且,D.内的任何一条直线都与平行二、填空题:本大题共6小题,每小题5分,共30分。11.若,则__________.12.若是方程的解,其中,则______.13.函数的值域是________14.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________15.在中,,,点为延长线上一点,,连接,则=______.16.设是定义在上以2为周期的偶函数,已知,,则函数在上的解析式是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.18.设平面向量,,函数.(Ⅰ)求时,函数的单调递增区间;(Ⅱ)若锐角满足,求的值.19.数列满足,.(1)试求出,,;(2)猜想数列的通项公式并用数学归纳法证明.20.如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,,现要将此铁皮剪出一个三角形,使得,.(1)设,求三角形铁皮的面积;(2)求剪下的铁皮三角形的面积的最大值.21.化简.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【详解】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.【点睛】本题考查空间直线位置关系的判定,这种位置关系的判断题,可以举反例或者用定理简单证明,属于基础题.2、A【解析】
利用线面垂直的判定,线面平行的判定,线线的位置关系及面面平行的性质逐一判断即可.【详解】对于A,垂直于同一个平面的两条直线互相平行,故A正确.对于B,若,,则或,故B错误.对于C,若,,则位置关系为平行或相交或异面,故C错误.对于D,若,,,则位置关系为平行或异面,故D错误.故选:A【点睛】本题主要考查了线面垂直的性质,线面平行的判定和面面平行的性质,属于简单题.3、A【解析】
由两直线垂直的条件,列出方程即可求解,得到答案.【详解】由题意,直线与直线垂直,则满足,解得,故选:A.【点睛】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解析】
不可能同时发生的事件为互斥事件,当两个互斥事件的概率和为1,则两个事件为对立事件,易得答案.【详解】因为事件彼此互斥,所以与是互斥事件,因为,,,所以与是对立事件,故选D.【点睛】本题考查互斥事件、对立事件的概念,注意对立事件一定是互斥事件,而互斥事件不一定是对立事件.5、D【解析】
根据为锐角可求得,根据特殊角三角函数值可知,从而得到,进而求得结果.【详解】,又,即本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够熟悉特殊角的三角函数值,根据角的范围确定特殊角的取值.6、D【解析】
由等差数列{an}中,S1=1,S【详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【点睛】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.7、A【解析】
在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【点睛】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.8、C【解析】向量,则,故解得.故答案为:C。9、D【解析】
利用异面直线与BC所成角的的定义,平移直线,即可得答案.【详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.10、D【解析】
利用平面与平面平行的判定定理一一进行判断,可得正确答案.【详解】解:A选项,内有无穷多条直线都与平行,并不能保证平面内有两条相交直线与平面平行,这无穷多条直线可以是一组平行线,故A错误;B选项,直线,,且直线a不在内,也不在内,直线a可以是平行平面与平面的相交直线,故不能保证平面与平面平行,故B错误;C选项,直线,直线,且,,当直线,同样不能保证平面与平面平行,故C错误;D选项,内的任何一条直线都与平行,则内至少有两条相交直线与平面平行,故平面与平面平行;故选:D.【点睛】本题主要考查平面与平面平行的判断,解题时要认真审题,熟练掌握面与平面平行的判定定理,注意空间思维能力的培养.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】
把分子的1换成,然后弦化切,代入计算.【详解】.故答案为-1.【点睛】本题考查三角函数的化简求值.解题关键是“1”的代换,即,然后弦化切.12、【解析】
把代入方程2cos(x+α)=1,化简根据α∈(0,2π),确定函数值的范围,求出α即可.【详解】∵是方程2cos(x+α)=1的解,∴2cos(+α)=1,即cos(+α)=.又α∈(0,2π),∴+α∈(,).∴+α=.∴α=.故答案为【点睛】本题考查三角函数值的符号,三角函数的定义域,考查逻辑思维能力,属于基础题.13、【解析】
利用函数的单调性,结合函数的定义域求解即可.【详解】因为函数的定义域是,,函数是增函数,所以函数的最小值为:,最大值为:.所以函数的值域为:,.故答案为,.【点睛】本题考查函数的单调性以及函数的值域的求法,考查计算能力.14、【解析】
观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.15、.【解析】
由题意,画出几何图形.由三线合一可求得,根据补角关系可求得.再结合余弦定理即可求得.【详解】在中,,作,如下图所示:由三线合一可知为中点则所以点为延长线上一点,则在中由余弦定理可得所以故答案为:【点睛】本题考查了等腰三角形性质,余弦定理在解三角形中的应用,属于基础题.16、【解析】试题分析:根据题意,由于是定义在上以2为周期的偶函数,那么当,,可知当x,,那么利用周期性可知,在上的解析式就是将x,的图像向右平移2个单位得到的,因此可知,答案为.考点:函数奇偶性、周期性的运用点评:解决此类问题的关键是熟练掌握函数的有关性质,即周期性,奇偶性,单调性等有关性质.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)【解析】
(1)利用同角的平方关系求cos(α-β)的值;(2)利用求出,再求的值.【详解】(1)因为,所以cos(α-β).(2)因为cosα=,所以,所以,因为β∈(0,),所以.【点睛】本题主要考查同角的三角函数的关系求值,考查差角的余弦,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用向量的数量积结合两角和与差的三角函数化简函数为一个角的一个三角函数的形式,利用正弦函数的单调增区间,求得时函数f(x)的单调递增区间;(Ⅱ)若锐角α满足,可得cos的值,然后求的值.【详解】解:(Ⅰ).由得,其中单调递增区间为,可得,∴时f(x)的单调递增区间为.(Ⅱ),∵α为锐角,∴..【点睛】本题考查向量的数量积以及三角函数的化简求值,考查了二倍角公式的应用,考查转化思想以及计算能力,属于中档题.19、(1),,(2),证明见详解.【解析】
(1)由题意得,在中分别令可求结果;(2)由数列前四项可猜想,运用数学归纳法可证明.【详解】解:(1),当时,,,当时,,,当时,,,所以,,(2)猜想下面用数学归纳法证明:假设时,有成立,则当时,有,故对成立.【点睛】该题考查由数列递推式求数列的项、通项公式,考查数学归纳法,考查学生的运算求解能力.20、(1)三角形铁皮的面积为;(2)剪下的铁皮三角形的面积的最大值为.【解析】试题分析:(1)利用锐角三角函数求出和的长度,然后以为底边、以为高,利用三角形面积公式求出三角形的面积;(2)设,以锐角为自变量将和的长度表示出来,并利用面积公式求出三角形的面积的表达式,利用与之间的关系,令将三角形的面积的表达式表示为以为自变量的二次函数,利用二次函数的单调性求出三角形的面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色有机肥料购销合同
- 猎头招聘服务合同权益法律服务
- 羊绒毛皮购销合同
- 工程居间合作合同范本
- 代理人权益保证函
- 散装货物运输合同
- 企业团队建设培训条款
- 商业服务合同终止
- 报效国家的军人诺言
- 汽车租赁合同协议范本
- 军队文职(新闻专业)招聘考试(重点)题库200题(含答案解析)
- 人教版(2024)数学七年级上册期末测试卷(含答案)
- 大部分分校:地域文化形考任务三-国开(CQ)-国开期末复习资料
- 2024年国家保密培训
- 2024年全新初二生物上册期末试卷及答案(人教版)
- 大学生心理健康与发展学习通超星期末考试答案章节答案2024年
- 西方经济学考试题库(含参考答案)
- 古希腊神话智慧树知到期末考试答案章节答案2024年上海外国语大学贤达经济人文学院
- 生活中的社会学智慧树知到期末考试答案章节答案2024年西安交通大学
- ISO28000:2022供应链安全管理体系
- 购买二手船流程介绍及经验总结
评论
0/150
提交评论