版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市第二中学2025届高一下数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若实数满足不等式组,则的最小值是()A. B.0 C.1 D.22.在等比数列中,已知,那么的前4项和为().A.81 B.120 C.121 D.1923.如图所示:在正方体中,设直线与平面所成角为,二面角的大小为,则为()A. B. C. D.4.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.5.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件,则的对立事件是()A.至多有一件次品 B.两件全是正品 C.两件全是次品 D.至多有一件正品6.设直线l与平面平行,直线m在平面上,那么()A.直线l不平行于直线m B.直线l与直线m异面C.直线l与直线m没有公共点 D.直线l与直线m不垂直7.已知为等比数列,是它的前项和.若,且与的等差中项为,则()A.31 B.32 C. D.8.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形9.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为().A. B.2 C. D.10.若数列,若,则在下列数列中,可取遍数列前项值的数列为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.12.计算:=_______________.13.等比数列中首项,公比,则______.14.若,则______.15.已知正实数x,y满足,则的最小值为________.16.在等比数列中,,的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列中,,.(1)令,求证:数列为等比数列;(2)求数列的通项公式;(3)令,为数列的前项和,求.18.在中,分别是内角所对的边,已知.(1)求角;(2)若,求的周长.19.在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.20.(1)已知,求的值(2)若,,且,,求的值21.某公司为了提高工效,需分析该公司的产量台与所用时间小时之间的关系,为此做了四次统计,所得数据如下:产品台数台2345所用时间小时34求出y关于x的线性回归方程;预测生产10台产品需要多少小时?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
画出不等式组的可行域,再根据线性规划的方法,结合的图像与的关系判定最小值即可.【详解】画出可行域,又求最小值时,故的图形与可行域有交点,且往上方平移到最高点处.易得此时在处取得最值.故选:A【点睛】本题主要考查了线性规划与绝对值函数的综合运用,需要根据题意画图,根据函数的图形性质分析.属于中档题.2、B【解析】
根据求出公比,利用等比数列的前n项和公式即可求出.【详解】,.故选:B【点睛】本题主要考查了等比数列的通项公式,等比数列的前n项和,属于中档题.3、A【解析】
连结BC1,交B1C于O,连结A1O,则∠BA1O是直线A1B与平面A1DCB1所成角θ1,由BC⊥DC,B1C⊥DC,知∠BCB1是二面角A1﹣DC﹣A的大小θ2,由此能求出结果.【详解】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°.故选A.【点睛】本题考查线面角、二面角的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.4、A【解析】
代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.5、B【解析】
根据对立事件的概念,选出正确选项.【详解】从四件正品、两件次品中随机取出两件,“至少有一件次品”的对立事件为两件全是正品.故选:B【点睛】本小题主要考查对立事件的理解,属于基础题.6、C【解析】
由题设条件,得到直线与直线异面或平行,进而得到答案.【详解】由题意,因为直线与平面平行,直线在平面上,所以直线与直线异面或平行,即直线与直线没有公共点,故选C.【点睛】本题主要考查了空间中直线与直线只见那的位置关系的判定及应用,以及直线与平面平行的应用,着重考查了推理与论证能力,属于基础题.7、A【解析】
根据与的等差中项为,可得到一个等式,和,组成一个方程组,结合等比数列的性质,这个方程组转化为关于和公比的方程组,解这个方程组,求出和公比的值,再利用等比数列前项和公式,求出的值.【详解】因为与的等差中项为,所以,因此有,故本题选A.【点睛】本题考查了等差中项的性质,等比数列的通项公式以及前项和公式,8、A【解析】
在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【点睛】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.9、D【解析】
利用三角形面积公式列出关系式,把,已知面积代入求出的长,再利用余弦定理即可求出的长.【详解】∵在中,,且的面积为,
∴,
解得:,
由余弦定理得:,
则.
故选D.【点睛】此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.10、D【解析】
推导出是以6为周期的周期数列,从而是可取遍数列前6项值的数列.【详解】数列,,,,,,,,,是以6为周期的周期数列,是可取遍数列前6项值的数列.故选:D.【点睛】本题考查数列的周期性与三角函数知识的交会,考查基本运算求解能力,求解时注意函数与方程思想的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】应从丙种型号的产品中抽取件,故答案为1.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即ni∶Ni=n∶N.12、【解析】试题分析:考点:两角和的正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.13、9【解析】
根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【点睛】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.14、【解析】
,则,故答案为.15、4【解析】
将变形为,展开,利用基本不等式求最值.【详解】解:,当时等号成立,又,得,此时等号成立,故答案为:4.【点睛】本题考查基本不等式求最值,特别是掌握“1”的妙用,是基础题.16、【解析】
根据等比数列的性质,可得,即可求解.【详解】由题意,根据等比数列的性质,可得,解得.故答案为:【点睛】本题主要考查了等比数列的性质的应用,其中解答熟记等比数列的性质,准确计算是解答的关键,着重考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3)【解析】
(1)计算,得证数列为等比数列.(2)先求出的通项公式,再计算数列的通项公式.(3)计算,根据错位相减法和分组求和法得到答案.【详解】(1),,,故数列是以为首项,以为公比的等比数列.(2)由(1)知,由,得数列的通项公式为.(3)由(2)知,记.有.两式作差得,得,则.【点睛】本题考查了数列的证明,数列通项公式,分组求和,错位相减法,意在考查学生的计算能力.18、(1)(2)6【解析】
(1)由条件利用正弦定理求B的某个函数值,结合B的范围确定B的大小.(2)由(1)及求得ac,再利用余弦定理可得.【详解】解:(1)因为,由正弦定理可得,又,所以,则,因为,所以;(2)由已知,所以,由余弦定理得,所以,则,因此的周长为6.【点睛】本题考查正弦定理、余弦定理及三角形面积计算,有时利用整体运算可以起到事半功倍的作用,考查计算能力,属于中档题.19、(1),;(2).【解析】
(1)根据等差数列{}中,=1,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,,设出基本元素,得到其通项公式;(2)由于,所以,那么利用裂项求和可以得到结论.【详解】(1)设:{}的公差为,因为,所以,解得=1或=-4(舍),=1.故,;(2)因为故.本题主要是考查了等差数列和等比数列的通项公式和前n项和,以及数列求和的综合运用.20、(1);(2).【解析】
(1)利用诱导公式化简可得:原式,再分子、分母同除以可得:原式,将代入计算得解.(2)将整理为:,利用两角差的正弦公式整理得:,根据已知求出、即可得解.【详解】解:(1)原式;(2)因为,,所以.又因为,所以,所以.于是.【点睛】本题主要考查了诱导公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《基础的设计原理》课件
- 《危机公关案例分析》课件
- 小学六年级科学课件教科版期末复习三 工具与技术
- 三年级上册科学教科版课件第6课 观察云
- 《生物高考总复习》课件
- 教科版科学六年级下册课件3.3《我们来造“环形山”》
- 一年级科学教科版课件《给动物分类》
- 幼儿园种植区建设合同
- 夫妻合伙栽树苗协议书(2篇)
- 《KB运作要领与规则》课件
- 卫生化学期末考试习题2
- 某市区域调研报告
- 污泥处理工施工详细注意事项培训
- 剪映专业版画中画与蒙版使用方法教程
- 一+《展示国家工程++了解工匠贡献》(教学课件)-【中职专用】高二语文精讲课堂(高教版2023·职业模块)
- 《小学生数学计算能力培养策略研究》中期总结
- 教科版四年级上册科学实验报告全 册
- 中职班级建设方案
- “三防”行动(防冻防凝防静电)专项检查表
- 2023年10月自考00087英语翻译试题及答案含评分标准
- IT行业模板:设备验收单
评论
0/150
提交评论