版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省离石区、古县、高县三地八校联考20XX年中考数学一模试卷
一、选择题
1.在下列四个数中,比o小的数是()
3fToM
A.V0B.|-0.5jC.11%D.
2.下列说法中:①在Rt^ABC中,ZC=90°,CD为AB边上的中线,若CD=2,则AB=4;②
13x-1
八边形的内角和度数为1080°;③2、3、4、3这组数据的方差为0.5;④分式方程--------
KX
的解为X^2;⑤己知菱形的一个内角为60°,一条对角线为2,则另一对角线为2V“3°正
确的序号有()
A.①②③⑤B.①②③④C.①③④⑤D.②③④⑤
3.如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若
由图(1)变到图(2),不改变的是()
mfID
图i卸
A.主视图B.主视图和左视图
C.主视图和俯视图D.左视图和俯视图
4.如图,四边形ABCD内接于。0,F是CD上一点,且而家,连接CF并延长交AD的延长
线于点E,连接AC,若NABC=105°,ZBAC=25°,则NE的度数为()
A.45°B.50°C.55°D.60°
1X
5.在解分式方程不了+不下=2时,我们第一步通常是去分母,即方程两边同乘以最简公
分母(x-1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是
A.数形结合B.转化思想C.模型思想D.特殊到一般
6.如图,已知E(-4,2),F(-1,-1),以原点0为位似中心,按比例尺2:1把4
EFO缩小,则E点对应点E'的坐标为()
111
A.(2,1)B.(万,~2)C.(2,-1)D.(2,
2
7.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四
边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()
C.8-4^2D.V2+1
8.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()
A.y=(x-1)2+2B.y=(x+1)2+2C.y=x2+lD.y=x2+3
9.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的
成绩如表:
候选人甲乙丙T
面试86929083
测试成绩(百分制)
笔试90838392
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4
的权.根据四人各自的平均成绩,公司将录取()
A.甲B.乙C.丙D.T
10.如图,正方形ABCD的对角线BD长为2点,若直线1满足:
①点D到直线1的距离为«;
②A、C两点到直线1的距离相等.
则符合题意的直线1的条数为()
A.1B.2C.3D.4
二、填空题(本大题共有10小题,每小题3分,共30分)
,x-3
11.函数尸区-4中,自变量x的取值范围是
12.如果菱形的两条对角线的长为a和b,且a,b满足(a-1)2+^^=0,那么菱形的
面积等于.
13.如图,已知圆锥的高为高所在直线与母线的夹角为30°,圆锥的侧面积
14.设m、n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=.
15.如图,已知Rt^ABC中,ZACB=90°,AC=6,BC=4,将AABC绕直角顶点C顺时针旋转
90°得到△口£口若点F是DE的中点,连接AF,贝|AF=.
16.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,
点Q从点B沿BC运动到点C时停止,它们运动的速度都是lcm/s.若点P,Q同时开始运动,
设运动时间为t(s),Z\BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下
42
列四个结论:①AE=6cm;②sinNEBOW;③当OVtWIO时,尸三干;④当812s时,△
DD
PBQ是等腰三角形.其中正确结论的序号是
三、解答题(本大题共8个小题,共72分)
0
17.计算:9X3*+(Ji-3)--2|+V2XV8.
\+2v=7
(2)已知x,y满足方程组,,求2x-2y的值.
2x+y=5
x2-2x+lx
18.(2016高县一模)己知A=―2—;--X-1.
x-1
(1)化简A;
'x-1>0
(2)当x满足不等式组(x-3<2,且x为奇数时,求A的值.
19.画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,
20.去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数.
(2)若把同学们去A、B、C、D四个地点的人数情况绘制成扇形统计图,则“去B地”的扇
形圆心角为多少?
(3)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡
片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽
取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数
字之和是3的倍数则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?说明理
(2)求证:四边形ABMC是菱形.
22.(2016高县一模)如图,一次函数yi=mx+n的图象分别交x轴、y轴于A、C两点,交
反比例函数(k>0)的图象于P、Q两点.过点P作PB,x轴于点B,若点P的坐标为
(2,2),4PAB的面积为4.
(1)求一次函数与反比例函数的解析式.
23.AE=cm,△FDM的周长为cm;
(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.
拓展延伸:
如图2,若点F不是AD的中点,且不与点A、D重合:
①AEDM的周长是否发生变化,并证明你的结论.
②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).
k
24.(2014成都)如图,已知抛物线y+9(x+2)(x-4)(k为常数,且k>0)与x轴从
左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=--4+b与抛物线的另一
交点为D.
(1)若点D的横坐标为-5,求抛物线的函数表达式;
(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与aABC相似,求
k的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出
发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到
20XX年山西省离石区、古县、高县三地八校联考中考数学一模试卷
参考答案与试题解析
一、选择题
1.在下列四个数中,比0小的数是()
A.v0B.|-0.5|C.11%D.
【考点】实数大小比较.
【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大
的反而小,据此判断即可.
【解答】解:根据实数比较大小的方法,可得
>r~^=-2<o,
-0.5|=0,5>0,
11%>0,
虫>0,
四个数中,比0小的数尸
故选:A.
【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正
实数>0>负实数,两个负实数绝对值大的反而小.
2.下列说法中:①在Rt^ABC中,ZC=90°,CD为AB边上的中线,若CD=2,则AB=4;②
13x-1
八边形的内角和度数为1080°;③2、3、4、3这组数据的方差为0.5;④分式方程一二二——
XX
的解为X=|";⑤己知菱形的一个内角为60°,一条对角线为2,则另一对角线为2近.正
确的序号有()
A.①②③⑤B.①②③④C.①③④⑤D.②③④⑤
【考点】命题与定理.
【分析】根据直角三角形斜边上的中线等于斜边的一半可判断出①的正误;根据多边形的内
角和公式:(n-2)180°(n23)且n为整数)可以计算出②的正误;根据方差公式可计
算出③的正误;解分式方程可判断出④的正误;⑤要分两种情况进行讨论.
【解答】解:①根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=4,故此说法正
确;
②八边形的内角和度数为:(8-2)X1800=1080°,故此说法正确;
③2、3、4、3这组数据的平均数为(2+3+4+3)+4=3,
方差为彳"[(2-3)2+(3-3)2+(4-3)2+(3-3)2]=0.5,故此说法正确;
13x—12
④分式方程二=------的解为x=w,说法正确;
xxJ
⑤已知菱形的一个内角为60°,一条对角线为2芯,则另一对角线为2或6,故此说法错
误;
故选:B.
【点评】此题主要考查了直角三角形的性质、多边形内角和公式、方差、分式方程的解法、
以及菱形的性质,关键是熟练掌握各知识点.
3.如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若
由图(1)变到图(2),不改变的是()
图1图2
A.主视图B,主视图和左视图
C.主视图和俯视图D.左视图和俯视图
【考点】简单组合体的三视图.
【分析】根据从上边看得到的图形是俯视图,从左边看得到的图形是左视图,可得答案.
【解答】解:从上边看得到的图形都是第一层一个小正方形,第二层是三个小正方形,
从左边看第一层是两个小正方形,第二层左边一个小正方形,
故选:D.
【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,从左边看得到的
图形是左视图.
4.如图,四边形ABCD内接于。0,F是CD上一点,且DF=BC,连接CF并延长交AD的延长
线于点E,连接AC,若/ABC=105°,ZBAC=25°,则/E的度数为()
A.45°B.50°C.55°D.60°
【考点】圆内接四边形的性质;圆心角、弧、弦的关系.
【分析】先根据圆内接四边形的性质求出NADC的度数,再由圆周角定理得出/DCE的度数,
根据三角形外角的性质即可得出结论.
【解答】解::四边形ABCD内接于00,ZABC=105°,
AZADC=180°-ZABC=180°-105°=75°.
VDF=BC,ZBAC=25°,
.\ZDCE=ZBAC=25°,
.\ZE=ZADC-ZDCE=75°-25°=50°.
故选B.
【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关
键.
5.在解分式方程7%+黄]=2时,我们第一步通常是去分母,即方程两边同乘以最简公
分母(x-1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是
()
A.数形结合B.转化思想C.模型思想D.特殊到一般
【考点】解分式方程;最简公分母.
【分析】分式方程去分母转化为整式方程,确定出用到的数学思想即可.
【解答】解:在解分式方程彳片+言、2时,我们第一步通常是去分母,即方程两边同
乘以最简公分母(x-1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数
学思想是转化思想,
故选B
【点评】此题考查了解分式方程,利用了转化的数学思想,解分式方程时注意要检验.
6.如图,已知E(-4,2),F(-1,-1),以原点0为位似中心,按比例尺2:1把4
111
A.(2,1)B.(万,y)C.(2,-1)D.(2,-5)
【考点】位似变换;坐标与图形性质.
【分析】以0为位似中心,按比例尺2:1,把△EFO缩小,结合图形得出,则点E的对应点
E,的坐标是E(-4,2)的坐标同时乘以-,,因而得到的点二的坐标为(2,-1).
【解答】解:根据题意可知,点E的对应点可的坐标是E(-4,2)的坐标同时乘以-三,
所以点E'的坐标为(2,-1).
故选:C.
【点评】本题考查了位似变换及坐标与图形性质的知识,关于原点成位似的两个图形,若位
似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(-
kx,-ky).是需要记忆的内容.
7.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四
边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()
G
C.8-4^2D.近+1
【考点】正方形的性质.
【分析】阴影部分的面积=$神厂5村(:,Z\ACD和AMEC都是等腰直角三角形,利用面积公式
即可求解.
【解答】解:,・•四边形ABCD是正方形,
二•ND=90°,ZACD=45°,AD=CD=2,
贝USAACD-ADCD与X2X2=2;
AC=V2AD=2V2,
则EC=2&-2,
VAMEC是等腰直角三角形,
11V22V2
/.SAMEC^MEEC^(2V-2)2=6-4丫
/.阴影部分的面积=5谢-SAMEC=2-(6-4^2)=46-4.
故选:A.
【点评】本题考查了正方形的性质,等腰直角三角形的性质;注意到阴影部分的面积二S^ACD
-S^MEC是关键.
8.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()
A.y=(x-1)2+2B.y=(x+1)2+2C.y=x2+lD.y=x2+3
【考点】二次函数图象与几何变换.
【分析】根据向下平移,纵坐标相减,即可得到答案.
【解答】解::•抛物线y=x42向下平移1个单位,
.••抛物线的解析式为y=x+2-1,即y=x2+l.
故选C.
【点评】本题考查了二次函数的图象与几何变换,向下平移⑸个单位长度纵坐标要减|a|.
9.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的
成绩如表:
候选人甲乙丙T
面试86929083
测试成绩(百分制)
笔试90838392
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4
的权.根据四人各自的平均成绩,公司将录取()
A.甲B.乙C.丙D.T
【考点】加权平均数.
【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出
答案.
【解答】解:甲的平均成绩为:(86X6+90X4)4-10=87.6(分),
乙的平均成绩为:(92X6+83X4)4-10=88.4(分),
丙的平均成绩为:(90X6+83X4)+10=87.2(分),
丁的平均成绩为:(83X6+92X4)+10=86.6(分),
因为乙的平均分数最高,
所以乙将被录取.
故选:B.
【点评】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.
10.如图,正方形ABCD的对角线BD长为2加,若直线1满足:
①点D到直线1的距离为芯;
②A、C两点到直线1的距离相等.
则符合题意的直线1的条数为()
A.1B.2C.3D.4
【考点】正方形的性质.
【分析】连接AC与BD相交于0,根据正方形的性质求出0D=J2然后根据点到直线的距离
和平行线间的距离相等解答.
【解答】解:如图,连接AC与BD相交于0,
:正方形ABCD的对角线BD长为2加,
.I.OD=V2,
直线1〃AC并且到D的距离为唐,
同理,在点D的另一侧还有一条直线满足条件,
故共有2条直线1.
【点评】本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到0
的距离小于C是本题的关键.
二、填空题(本大题共有10小题,每小题3分,共30分)
,X-3
11.函数kx-4中,自变量x的取值范围是x23且xW4.
【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.
【分析】根据二次根式的意义可知:x-320,根据分式的意义可知:X-4W0,就可以求出
x的范围.
【解答】解:根据题意得:*-320且*-4#0,
解得:x23且xW4.
【点评】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从
三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
12.如果菱形的两条对角线的长为a和b,且a,b满足(a-1)Mb-4=0,那么菱形的
面积等于2.
【考点】菱形的性质;非负数的性质:偶次方;非负数的性质:算术平方根.
【分析】根据非负数的性质列式求出a、b,再根据菱形的面积等于对角线乘积的一半列式
计算即可得解.
【解答】解:由题意得,a-1=0,b-4=0,
解得a=l,b=4,
•菱形的两条对角线的长为a和b,
菱形的面积=£xiX4=2.
故答案为:2.
【点评】本题考查了非负数的性质,菱形的性质,主要利用了菱形的面积等于对角线乘积的
一半,需熟记.
13.如图,已知圆锥的高为机,高所在直线与母线的夹角为30。,圆锥的侧面积为2n
【考点】圆锥的计算.
【分析】先利用三角函数计算出B0,再利用勾股定理计算出AB,然后利用圆锥的侧面展开
图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的
面积公式计算圆锥的侧面积.
【解答】解:如图,ZBA0=30°,A0=V3,
BO
在RtAABO中,:tan/BA0=F,
AU
•,.B0=^3tan30°=1,即圆锥的底面圆的半径为1,
AAB=7(V3)2-r2=2,即圆锥的母线长为2,
圆锥的侧面积=/2Ji12=2Ji.
故答案为2JI.
【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底
面的周长,扇形的半径等于圆锥的母线长.
14.设m、n是一元二次方程X2+2X-7=0的两个根,则m2+3m+n=5.
【考点】根与系数的关系.
【分析】根据根与系数的关系可知m+n=-2,又知m是方程的根,所以可得m2+2m-7=0,最
后可将m2+3m+n变成m2+2m+m+n,最终可得答案.
【解答】解:•设m、n是一元二次方程x?+2x-7=0的两个根,
m+n--2,
•••m是原方程的根,
/.m2+2m-7=0,即m2+2m=7,
m2+3m+n=m2+2m+m+n=7-2=5,
故答案为:5.
【点评】本题主要考查了根与系数的关系,解题的关键是把布+3111+11转化为m2+2m+m+n的形
式,结合根与系数的关系以及一元二次方程的解即可解答.
15.如图,已知RtZiABC中,ZACB=90°,AC=6,BC=4,将AABC绕直角顶点C顺时针旋转
90°得到△»£口若点F是DE的中点,连接AF,则AF=5.
BD
【考点】旋转的性质.
【分析】根据旋转的性质,EC=BC=4,DC=AC=6,ZACD=ZACB=90°,由点F是DE的中点,
可求出EG、GF,因为AE=AC-EC=2,可求出AG,然后运用勾股定理求出AF.
【解答】解:作FGLAC,
根据旋转的性质,EC=BC=4,DC=AC=6,ZACD=ZACB=90°,
:点F是DE的中点,
;.FG〃CD
11
;.GF苓CD=0C=3
11
EG=5EC='BC=2
VAC=6,EC=BC=4
.\AE=2
.\AG=4
根据勾股定理,AF=5.
【点评】本题主要考查了旋转的性质、三角形中位线性质、勾股定理的综合运用,作垂线构
造直角三角形是解决问题的关键.
16.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,
点Q从点B沿BC运动到点C时停止,它们运动的速度都是lcm/s.若点P,Q同时开始运动,
设运动时间为t(s),ZkBPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下
42
列四个结论:①AE=6cm;②sin/EBC=q;③当OCtWIO时,y=-gt2;④当t=12s时,△
PBQ是等腰三角形.其中正确结论的序号是①②③.
【考点】动点问题的函数图象.
【分析】由图2可知,在点(10,40)至点(14,40)区间,4BPQ的面积不变,因此可推
论BC=BE,由此分析动点P的运动过程如下:
(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;
(2)在ED段,y=40是定值,持续时间4s,则ED=4;
(3)在DC段,y持续减小直至为0,y是t的一次函数.
【解答】解:(1)分析函数图象可知,BC=10cm,ED=4cm,故AE=AD-ED=BC-ED=10-4=6cm,
故①正确;
(2)如答图1所示,连接EC,过点E作EFLBC于点F,
11EF
由函数图象可知,BC=BE=10cm,SABEC=40=KBCEF=7TX10XEF,.\EF=8,sinZEBC=^=T,
DE
故②正确;
(3)如答图2所示,过点P作PGLBQ于点G,
VBQ=BP=t,
11142
y=SAup«^7BQPG^7BQBPsinNEBCjtt三=口
zzzbb
故③正确;
(4)结论D错误.理由如下:
当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,
NC.
此时AN=8,ND=2,由勾股定理求得:NB=8血,NC=2'F,
VBC=10,
.♦.△BCN不是等腰三角形,即此时APEQ不是等腰三角形.
故④错误;
故答案为:①②③.
Sffi2
会3
【点评】本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运
动过程.突破点在于正确判断出BC=BE=10cm.
三、解答题(本大题共8个小题,共72分)
0
17.计算:9X3*十(it-3)--2|+V2XV8.
(x+2y=7
(2)已知x,y满足方程组,求2x-2y的值.
[2x+y=5
【考点】二元一次方程组的解;零指数累;负整数指数累;二次根式的乘除法.
【分析】(1)根据负指数累、零次幕、绝对值及二次根式的运算分别计算求和即可;
(2)把方程的两边分别相减可得到x-y的值,从而可求得2x-2y.
【解答】解:
(1)9X3*+(Ji-3)°-|-2|+V2XV8
1V16
=9X—+1-2+
y
=1+1-2+4
=4;
[x+2y=7①
(2)在中,
[2x+y=5②
由②-①可得x-y=-2,
.*.2x-2y=-4.
【点评】本题主要考查实数的运算及方程组的解法,掌握实数的运算法则及方程组的加减消
元法法是解题的关键.
x2-2x+lX
18.(2016高县一模)已知A=2―i-x-1.
x-1
(1)化简A;
'x-1>0
(2)当X满足不等式组jx-3<2,且X为奇数时,求A的值.
【考点】分式的化简求值;一元一次不等式组的整数解.
【分析】(1)先通分,再把分子相加减即可;
(2)求出不等式的解集,再求出x为奇数时A的值即可.
(x-1)2—£_
【解答】解:(1)A=(x+i)(,x-1)-x-1
2
(x-1)x(x+l)
(x+l)(x-l)-(x+l)(x-l)
x2-2x+l-x2-x
(x+1)(X-1)
―3x+l
(x+1)(X-1),
'xT>0①
(2)jx-3<2②,由①得,x》l,由②得,x<5,故不等式的解集为:lWx<5,
又二”为奇数,且x#l,
.*.x=3,
-9+1
AA-(3+1)(3-1)
【点评】本题考查的是分式的化简求值,在解答此类提问题时要注意X的取值要保证每一个
分式有意义.
19.画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,
【考点】作图一应用与设计作图;勾股定理.
【分析】在图1中画等腰直角三角形;在图2、3、4中画有一条直角边为点,另一条直角
边分别为3近,4&,2血的直角三角形,然后计算出四个直角三角形的周长.
【解答】解:如图1,三角形的周长=2泥+技;
如图2,三角形的周长=4加+2代;
如图3,三角形的周长=—+旅;
如图4,三角形的周长=3加+30
【点评】本题考查了作图-相似变换:两个图形相似,其中一个图形可以看作由另一个图形
放大或缩小得到.解决本题的关键是利用网格特点作出直角.
20.去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数.
(2)若把同学们去A、B、C、D四个地点的人数情况绘制成扇形统计图,则“去B地”的扇
形圆心角为多少?
(3)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡
片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽
取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数
字之和是3的倍数则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?说明理
【考点】游戏公平性;扇形统计图;列表法与树状图法.
【分析】(1)假设去B地的人数为x人,根据去B地参加夏令营活动人数占总人数的40%,
进而得出方程求出即可;
(2)根据扇形圆心角的计算解答即可;
(3)根据已知列表得出所有可能,进而利用概率公式求出即可.
【解答】解(1)设去B地x人,则30+X+:O+]0=4O%,解得X=40,
答:去B地的人数是40;
an
(2)“去B地”的扇形圆心角为而X360°=144°;
(3)不公平,
列表:
4(1,4)(2,4)(3,4)(4,4)
3(1,3)(2,3)(3,3)(4,3)
2(1,2)(2,2)(3,2)(4,2)
1(1,1)(2,1)(3,1)(4,1)
1234
15
•・•P(姐姐)=4「(弟弟)=16
又•••此游戏结果共有16种,且每种发生的可能性相同
此游戏不公平.
【点评】此题主要考查了条形统计图以及列表法求出概率和游戏公平性等知识,正确列举出
所有可能是解题关键.
21.若AB=4爽,求右的长;(结果保留”)
(2)求证:四边形ABMC是菱形.
【考点】切线的性质;菱形的判定;弧长的计算.
【分析】(1)连接0B,由E为0D中点,得到0E等于0A的一半,在直角三角形AOE中,
得出/0AB=30°,进而求出NAOE与/AOB的度数,设OA=x,利用勾股定理求出x的值,确
定出圆的半径,利用弧长公式即可求出标的长;
(2)由第一问得到/BAM=NBMA,利用等角对等边得到AB=MB,利用SAS得到三角形OCM与
三角形OBM全等,利用全等三角形对应边相等得到CM=BM,等量代换得到CM=AB,再利用全
等三角形对应角相等及等量代换得到一对内错角相等,进而确定出CM与AB平行,利用一组
对边平行且相等的四边形为平行四边形得到ABMC为平行四边形,最后由邻边相等的平行四
边形为菱形即可得证.
【解答】(1)解::OA=OB,E为AB的中点,
.•.ZAOE=ZBOE,OE±AB,
VOE±AB,E为0D中点,
11
;.0EqOD节OA,
.,.在RtZ\AOE中,Z0AB=30°,ZA0E=60°,ZA0B=120°,
设0A=x,贝
:AB=45,
.•.AB=2AE=V3X=4V3,
解得:x=4,
120兀X,8几
则可的长1h
~180~。
(2)证明:由(1)得/0AB=/0BA=30°,ZB0M=ZC0M=60°,ZAMB=30°,
ZBAM=ZBMA=30°,
;.AB=BM,
为圆0的切线,
在△COM和△BOM中,
'CO=BO
,ZCOI=ZBOM,
L01=01
.•.△COM^ABOM(SAS),
.\CM=BM,ZCM0=ZBM0=30",
.•.CM=AB,ZCMO=ZMAB,
ACM//AB,
四边形ABMC为菱形.
【点评】此题考查了切线的性质,菱形的判断,全等三角形的判定与性质,以及弧长公式,
熟练掌握切线的性质是解本题的关键.
22.(2016高县一模)如图,一次函数yi=mx+n的图象分别交x轴、y轴于A、C两点,交
反比例函数y2=5(k>0)的图象于P、Q两点.过点P作PBJ_x轴于点B,若点P的坐标为
(2,2),4PAB的面积为4.
(1)求一次函数与反比例函数的解析式.
(2)当x为何值时,yi<y2?
【考点】反比例函数与一次函数的交点问题.
【分析】(1)由反比例函数图象上点坐标的特点可求出k值的大小,从而得出反比例函数
解析式;由三角形的面积公式可得出AB=4,结合点B坐标可得出点A的坐标,由A、P点的
坐标利用待定系数法即可求出一次函数的解析式;
(2)令yi=y2,求出x的值,从而得出点Q的横坐标,结合两函数图象的位置关系即可得出
结论.
【解答】解:(1)•••点P的坐标为(2,2),
;.k=2X2=4,
4
.••反比例函数解析式为y2=T.
1
,.,SAABC=^ABPB=4,
.\AB=4,
...点A(-2,0).
•..点A、P在一次函数图象上,
(-2m+n=0(1
••・有(2小=0,解得:喷
,一次函数解析式为yi=^x+l.
14
⑵令yi而x+l=yzq,BPX2+2X-8=0,
解得:xi=-4,xz=2.
即点Q横坐标为-4,点P横坐标为2.
结合两函数图象可知:
当x<-4和0<x<2时,一次函数图象在反比例函数图象下方,
则当x<-4或0<x<2时,yi<y2
【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、
三角形的面积公式以及待定系数法求函数解析式,解题的关键是:(1)求出点A的坐标;
(2)结合函数图象的位置关系解不等式.
23.AE=3cm,ZkFDM的周长为16cm;
(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.
拓展延伸:
如图2,若点F不是AD的中点,且不与点A、D重合:
①AFDM的周长是否发生变化,并证明你的结论.
②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).
【考点】四边形综合题.
【分析】(1)根据直角三角形勾股定理即可得出结论,
(2)利用三角形相似对边比例关系计算出三角形各边长即可计算出结果,
①根据题意,利用三角形全等即可证明结论,②根据勾股定理得出AE,然后利用全等三角
形得出AF、AK,即可得出结果.
【解答】解:(1)设AE=x,贝!|EF=8-x,AF=4,ZA=90°,42+x2=(8-x)2,x=3,
VZMFE=90°,
:.ZDFM+ZAFE=90°,
又:/八=/»=90°,ZAFE=ZDMF,
AAEF^ADFM,
EF_AEAF
,••丽下『卜
又:AE=3,AF=DF=4,EF=5,
5_3F.-203_4YSW_16
・•丽=Tn-~'彳而,DI-亍
2016
AFMD的周长=4+-^-+-^~=16,
故答案为:3,16;
(2)EG±BF,EG=BF,
则NEGH+NGEB=90°,
由折叠知,点B、F关于直线GE所在直线对称,
图2
/.ZFBE=ZEGH,
•••四边形ABCD是正方形,
.\AB=BC,ZC=ZABC=90
四边形GHBC是矩形,
/.GH=BC=AB,
AAFB^AHEG,
.\BF=EG;
①AEDM的周长不发生变化,
由折叠知NEFM=/ABC=90°,
:.ZDFM+ZAFE=90°,
,/四边形ABCD为正方形,ZA=ZD=90
ZDFM+ZDMF=90°,
ZAFE=ZDMF,
,AAEF^ADFM,
.△1!«口的周长」D
•'△AEF的周长"AE'
设AF为x,FD=8-x,
22Z2
A-2V3X+AE(8-AE);
…64-x2
解得:一云一,
."股的周长_8-x
••x+AE+8-AE.AE'
(8-x)(8+x)16(64-x2)”
-------5-=-------5-=16
/.FMD的周长=64二X'M-x~,
16
AFMD的周长不变,
②由折叠知/FBE=NEGH,
•..四边形ABCD是正方形,
.\AB=BC,ZC=ZABC=90°,
四边形GHBC是矩形,
.\GH=BC=AB,
AAFB^AHEG,
.\BF=EG,
所以(2)中结论成立.
【点评】本题主要考查旋转的性质以及全等三角形的判定和性质,需要注意的是:旋转变化
前后,对应线段、对应角分别相等,图形的大小、形状都不改变,难度较大.
24.(2014成都)如图,已知抛物线y^(x+2)(x-4)(k为常数,且k>0)与x轴从
O
左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y二-尊"x+b与抛物线的另一
交点为D.
(1)若点D的横坐标为-5,求抛物线的函数表达式;
(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与aABC相似,求
k的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出
发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到
【考点】二次函数综合题.
【分析】(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛
物线解析式,求得k的值;
(2)因为点P在第一象限内的抛物线上,所以/ABP为钝角.因此若两个三角形相似,只
可能是AABCS^APB或△ABCs^PAB.如答图2,按照以上两种情况进行分类讨论,分别计
算;
(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+/F.如答图3,作辅助
线,将AF+aDF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所
求的F点.
【解答】解:(1)抛物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业资产评估与交易合同
- 二零二四年度技术开发项目合作合同
- 2024版特许加盟合同加盟费用计算2篇
- 2024年度企业办公网络维护服务合同
- 2024年个人借款合同范本合同版B版
- 大型企业2024年度视频监控网络安全合同2篇
- 2024年度广告制作及安装协议协议范本版
- 2024版股权投资合同:丙丁双方关于投资甲方公司的协议3篇
- 2024年子女抚养权转让合同样本一
- 2024年度建筑彩钢瓦施工协议样本版B版
- 机电学院-工作计划
- 答辩-电子商务支持系统
- 国家开放大学《高等数学基础》形考任务 1-4 参考答案
- 新药申报程序课件
- 河南省洛阳市2022-2023学年高二上学期期中考试历史试卷(含答案)
- 飞行剖面指南讲解
- 中医康复技术专业设置论证报告
- 矿泉水项目商业计划书
- 《Illustrator实例教程(Illustrator 2020)(电子活页微课版)(第2版)》课件 第1、2章 初识Illustrator 2020、图形的绘制与编辑
- 李丰的黄金K线理论
- 2024届新高考生物冲刺热点复习:生物膜微专题
评论
0/150
提交评论