山西省朔州市怀仁八中2025届数学高一下期末检测模拟试题含解析_第1页
山西省朔州市怀仁八中2025届数学高一下期末检测模拟试题含解析_第2页
山西省朔州市怀仁八中2025届数学高一下期末检测模拟试题含解析_第3页
山西省朔州市怀仁八中2025届数学高一下期末检测模拟试题含解析_第4页
山西省朔州市怀仁八中2025届数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市怀仁八中2025届数学高一下期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的圆心角为120°,半径为6,则扇形的面积为()A. B. C. D.2.的内角的对边分别为,分别根据下列条件解三角形,其中有两解的是()A.B.C.D.3.在平面直角坐标系xOy中,点P(2,–1)到直线l:4x–3y+4=0的距离为()A.3 B. C.1 D.34.如图所示,在四边形中,,,.将四边形沿对角线折成四面体,使平面平面,则下列结论中正确的结论个数是()①;②;③与平面所成的角为;④四面体的体积为.A.个 B.个 C.个 D.个5.若平面和直线,满足,,则与的位置关系一定是()A.相交 B.平行 C.异面 D.相交或异面6.已知圆心在轴上的圆经过,两点,则的方程为()A. B.C. D.7.设变量满足约束条件,则目标函数的最小值为()A. B. C. D.28.如图,直角的斜边长为2,,且点分别在轴,轴正半轴上滑动,点在线段的右上方.设,(),记,,分别考察的所有运算结果,则()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值9.从装有4个红球和3个白球的袋中任取2个球,那么下列事件中,是对立事件的是()A.至少有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;恰好有2个白球 D.至少有1个白球;都是白球10.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,已知扇形和,为的中点.若扇形的面积为1,则扇形的面积为______.12.在中,,,.若,,且,则的值为______________.13.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用表示解下个圆环所需的移动最少次数,满足,且,则解下4个环所需的最少移动次数为_____.14.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则_____.15.已知与的夹角为,,,则________.16.设偶函数的部分图像如图所示,为等腰直角三角形,,则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)设1<x<,求函数y=x(3﹣2x)的最大值;(2)解关于x的不等式x2-(a+1)x+a<1.18.的内角的对边分别为,已知.(1)求角的大小;(2)若为锐角三角形,且,求面积的取值范围.19.如图所示,是正三角形,线段和都垂直于平面,设,,且为的中点.(1)求证:平面;(2)求平面与平面所成的较小二面角的大小20.已知函数.(1)用五点法作出函数在区间上的大致图象(列表、描点、连线);(2)若,,求的值.21.若,其为锐角,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据扇形的面积公式即可求得.【详解】解:由题意:,所以扇形的面积为:故选:C【点睛】本题考查扇形的面积公式,考查运算求解能力,核心是记住公式.2、D【解析】

运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除.【详解】A.,由所以不存在这样的三角形.B.,由且所以只有一个角BC.中,同理也只有一个三角形.D.中此时,所以出现两个角符合题意,即存在两个三角形.所以选择D【点睛】在直接用正弦定理求另外一角中,求出后,记得一定要去判断是否会出现两个角.3、A【解析】

由点到直线距离公式计算.【详解】.故选:A.【点睛】本题考查点到直线的距离公式,掌握距离公式是解题基础.点到直线的距离为.4、B【解析】

根据题意,依次分析命题:对于①,可利用反证法说明真假;对于②,为等腰直角三角形,平面,得平面,根据勾股定理逆定理可知;对于③,由与平面所成的角为知真假;对于④,利用等体积法求出所求体积进行判定即可,综合可得答案.【详解】在四边形中,,,则,可得,由,若,且,可得平面,平面,,这与矛盾,故①不正确;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正确;由②知平面,则直线与平面所成的角为,且有,,则为等腰直角三角形,且,则.故③不正确;四面体的体积为,故④不正确.故选:B.【点睛】本题主要考查了直线与平面所成的角,以及三棱锥的体积的计算,考查了空间想象能力,推理论证能力,解题的关键是须对每一个进行逐一判定.5、D【解析】

当时与相交,当时与异面.【详解】当时与相交,当时与异面.故答案为D【点睛】本题考查了直线的位置关系,属于基础题型.6、A【解析】

由圆心在轴上设出圆心坐标,设出圆的方程,将,两点坐标代入,即可求得圆心坐标和半径,进而得圆的方程.【详解】因为圆心在轴上,设圆心坐标为,半径为设圆的方程为因为圆经过,两点代入可得解方程求得所以圆C的方程为故选:A【点睛】本题考查了圆的方程求法,关键是求出圆心和半径,属于基础题.7、B【解析】

根据不等式组画出可行域,数形结合解决问题.【详解】不等式组确定的可行域如下图所示:因为可化简为与直线平行,且其在轴的截距与成正比关系,故当且仅当目标函数经过和的交点时,取得最小值,将点的坐标代入目标函数可得.故选:B.【点睛】本题考查常规线性规划问题,属基础题,注意数形结合即可.8、B【解析】

设,用表示出,根据的取值范围,利用三角函数恒等变换化简,进而求得最值的情况.【详解】依题意,所以.设,则,所以,,所以,当时,取得最大值为.,所以,所以,当时,有最小值为.故选B.【点睛】本小题主要考查平面向量数量积的坐标运算,考查三角函数化简求值,考查化归与转化的数学思想方法,属于难题.9、A【解析】

根据对立事件的定义判断.【详解】从装有4个红球和3个白球的袋内任取2个球,在A中,“至少有1个白球”与“都是红球”不能同时发生且必有一个事件会发生,是对立事件.在B中,“至少有1个白球”与“至少有1个红球”可以同时发生,不是互斥事件.在C中,“恰好有1个白球”与“恰好有2个白球”是互斥事件,但不是对立事件.在D中,“至少有1个白球”与“都是白球”不是互斥事件.故选:A.10、A【解析】

由题意利用函数的图象变换法则,即可得出结论。【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选.【点睛】本题主要考查函数的图象变换法则,注意对的影响。二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

设,在扇形中,利用扇形的面积公式可求,根据已知,在扇形中,利用扇形的面积公式即可计算得解.【详解】解:设,扇形的面积为1,即:,解得:,为的中点,,在扇形中,.故答案为:1.【点睛】本题主要考查了扇形的面积公式的应用,考查了数形结合思想和转化思想,属于基础题.12、【解析】,则.【考点】向量的数量积【名师点睛】根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,计算数量积,选取基地很重要,本题的已知模和夹角,选作基地易于计算数量积.13、7【解析】

利用的通项公式,依次求出,从而得到,即可得到答案。【详解】由于表示解下个圆环所需的移动最少次数,满足,且所以,,故,所以解下4个环所需的最少移动次数为7故答案为7.【点睛】本题考查数列的递推公式,属于基础题。14、【解析】

先利用同角三角函数的商数关系可得,再结合正弦定理及余弦定理化简可得,然后求解即可.【详解】解:因为,则,所以,即,所以,则,即,即即,故答案为:.【点睛】本题考查了同角三角函数的商数关系,重点考查了正弦定理及余弦定理的应用,属中档题.15、3【解析】

将平方再利用数量积公式求解即可.【详解】因为,故.化简得.因为,故.故答案为:3【点睛】本题主要考查了模长与数量积的综合运用,经常利用平方去处理.属于基础题.16、【解析】的部分图象如图所示,为等腰直角三角形,,,函数是偶函数,,函数的解析式为,故答案为.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求使解题的关键.求解析时求参数是确定函数解析式的关键,往往利用特殊点求的值,由特殊点求时,一定要分清特殊点是“五点法”的第几个点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)由题意利用二次函数的性质,求得函数的最大值.(2)不等式即(x﹣1)(x﹣a)<1,分类讨论求得它的解集.【详解】(1)设1<x,∵函数y=x(3﹣2x)2,故当x时,函数取得最大值为.(2)关于x的不等式x2﹣(a+1)x+a<1,即(x﹣1)(x﹣a)<1.当a=1时,不等式即(x﹣1)2<1,不等式无解;当a>1时,不等式的解集为{x|1<x<a};当a<1时,不等式的解集为{x|a<x<1}.综上可得,当a=1时,不等式的解集为∅,当a>1时,不等式的解集为{x|1<x<a},当a<1时,不等式的解集为{x|a<x<1}.【点睛】本题主要考查二次函数的性质,求二次函数的最值,一元二次不等式的解集,体现了分类讨论的数学思想,属于基础题.18、(1)(2)【解析】

(1)利用正弦定理边角互化的思想以及两角和的正弦公式、三角形的内角和定理以及诱导公式求出的值,结合角的范围求出角的值;(2)由三角形的面积公式得,由正弦定理结合内角和定理得出,利用为锐角三角形得出的取值范围,可求出的范围,进而求出面积的取值范围.【详解】(1),由正弦定理边角互化思想得,所以,,,,,;(2)由题设及(1)知的面积.由正弦定理得.由于为锐角三角形,故,由(1)知,所以,故,从而.因此面积的取值范围是.【点睛】本题考查正弦定理解三角形以及三角形面积的取值范围的求解,在解三角形中,等式中含有边有角,且边的次数相等时,可以利用边角互化的思想求解,一般优先是边化为角的正弦值,求解三角形中的取值范围问题时,利用正弦定理结合三角函数思想进行求解,考查计算能力,属于中等题.19、(1)见解析(2)【解析】

(1)取的中点,连接,先证即说明,再由线面平行的判定定理说明平面.(2)延长交的延长线于,连.说明为所求二面角的平面角.再计算即可.【详解】解:(1)如图所示,取的中点,连接.∵,∴.又,∴.∴四边形为平行四边形.故.∵平面,平面,∴平面.(2)延长交的延长线于,连.由,知,为的中点,又为的中点,∴.又平面,,∴平面.∴为所求二面角的平面角.在等腰直角三角形中,易求.故所求二面角的大小为.【点睛】本题考查线面平行、二面角的平面角,属于中档题.20、(1)见解析;(2).【解析】

(1)将分别取、、、、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论