2025届云南省玉溪市第二中学数学高一下期末达标检测模拟试题含解析_第1页
2025届云南省玉溪市第二中学数学高一下期末达标检测模拟试题含解析_第2页
2025届云南省玉溪市第二中学数学高一下期末达标检测模拟试题含解析_第3页
2025届云南省玉溪市第二中学数学高一下期末达标检测模拟试题含解析_第4页
2025届云南省玉溪市第二中学数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省玉溪市第二中学数学高一下期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若||=2cos15°,||=4sin15°,的夹角为30°,则等于()A. B. C.2 D.2.三角函数是刻画客观世界周期性变化规律的数学模型,单位圆定义法是任意角的三角函数常用的定义方法,是以角度(数学上最常用弧度制)为自变量,任意角的终边与单位圆交点坐标为因变量的函数.平面直角坐标系中的单位圆指的是平面直角坐标系上,以原点为圆心,半径为单位长度的圆.问题:已知角的终边与单位圆的交点为,则()A. B. C. D.3.下列结论不正确的是()A.若,,则 B.若,,则C.若,则 D.若,则4.某几何体的三视图如下图所示(单位:cm)则该几何体的表面积(单位:)是()A. B. C. D.5.已知向量=(3,4),=(2,1),则向量与夹角的余弦值为()A. B. C. D.6.设为中的三边长,且,则的取值范围是()A. B.C. D.7.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.8.已知实数,,,则()A. B. C. D.9.已知向量,则下列结论正确的是A. B. C.与垂直 D.10.已知正三角形ABC边长为2,D是BC的中点,点E满足,则()A. B. C. D.-1二、填空题:本大题共6小题,每小题5分,共30分。11.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.12.公比为的无穷等比数列满足:,,则实数的取值范围为________.13.设数列是首项为0的递增数列,函数满足:对于任意的实数,总有两个不同的根,则的通项公式是________.14.已知扇形的圆心角为,半径为5,则扇形的弧长_________.15.数列中,,则____________.16.数列中,为的前项和,若,则____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.18.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.19.一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:温度20253035产卵数/个520100325(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)参考数据:,,,,,,,,,,5201003251.6134.615.7820.已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.21.在中,角A,B,C,的对应边分别为,且.(Ⅰ)求角B的大小;(Ⅱ)若的面积为,,D为AC的中点,求BD的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析:先根据向量数量积定义化简,再根据二倍角公式求值.详解:因为,所以选B.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式;二是坐标公式;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.2、A【解析】

先求出和的值,再根据诱导公式即可得解.【详解】因为角的终边与单位圆的交点为,所以,,则.故选:A.【点睛】本题考查任意角三角函数值的求法,考查诱导公式的应用,属于基础题,3、B【解析】

根据不等式的性质,对选项逐一分析,由此得出正确选项.【详解】对于A选项,不等式两边乘以一个正数,不等号不改变方程,故A正确.对于B选项,若,则,故B选项错误.对于C、D选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C、D正确.综上所述,本小题选B.【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.4、C【解析】

通过三视图的观察可得到该几何体是由一个圆锥加一个圆柱得到的,表面积由一个圆锥的表面积和一个圆柱的侧面积组成【详解】圆柱的侧面积为,圆锥的表面积为,其中,,。选C【点睛】几何体的表面积一定要看清楚哪些面存在,哪些面不存在5、A【解析】

由向量的夹角公式计算.【详解】由已知,,.∴.故选A.【点睛】本题考查平面向量的数量积,掌握数量积公式是解题基础.6、B【解析】

由,则,再根据三角形边长可以证得,再利用不等式和已知可得,进而得到,再利用导数求得函数的单调性,求得函数的最小值,即可求解.【详解】由题意,记,又由,则,又为△ABC的三边长,所以,所以,另一方面,由于,所以,又,所以,不妨设,且为的三边长,所以.令,则,当时,可得,从而,当且仅当时取等号.故选B.【点睛】本题主要考查了解三角形,综合了函数和不等式的综合应用,以及基本不等式和导数的应用,属于综合性较强的题,难度较大,着重考查了分析问题和解答问题的能力,属于难题.7、D【解析】

由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.8、C【解析】

先得出,,,然后利用在上的单调性即可比较出的大小.【详解】因为所以,,因为且在上单调递增所以故选:C【点睛】利用函数单调性比较函数值大小的时候,应将自变量转化到同一个单调区间内.9、C【解析】

可按各选择支计算.【详解】由题意,,A错;,B错;,∴,C正确;∵不存在实数,使得,∴不正确,D错,故选C.【点睛】本题考查向量的数量积、向量的平行,向量的模以及向量的垂直等知识,属于基础题.10、C【解析】

化简,分别计算,,代入得到答案.【详解】正三角形ABC边长为2,D是BC的中点,点E满足故答案选C【点睛】本题考查了向量的计算,将是解题的关键,也可以建立直角坐标系解得答案.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.12、【解析】

依据等比数列的定义以及无穷等比数列求和公式,列出方程,即可求出的表达式,再利用求值域的方法求出其范围。【详解】由题意有,即,因为,所以。【点睛】本题主要考查无穷等比数列求和公式的应用以及基本函数求值域的方法。13、【解析】

利用三角函数的图象与性质、诱导公式和数列的递推公式,可得,再利用“累加”法和等差数列的前n项和公式,即可求解.【详解】由题意,因为,当时,,又因为对任意的实数,总有两个不同的根,所以,所以,又,对任意的实数,总有两个不同的根,所以,又,对任意的实数,总有两个不同的根,所以,由此可得,所以,所以.故答案为:.【点睛】本题主要考查了三角函数的图象与性质的应用,以及诱导公式,数列的递推关系式和“累加”方法等知识的综合应用,着重考查了推理与运算能力,属于中档试题.14、【解析】

根据扇形的弧长公式进行求解即可.【详解】∵扇形的圆心角α,半径为r=5,∴扇形的弧长l=rα5.故答案为:.【点睛】本题主要考查扇形的弧长公式的计算,熟记弧长公式是解决本题的关键,属于基础题.15、1【解析】

利用极限运算法则求解即可【详解】故答案为:1【点睛】本题考查数列的极限,是基础题16、【解析】

由,结合等比数列的定义可知数列是以为首项,为公比的等比数列,代入等比数列的求和公式即可求解.【详解】因为,所以,又因为所以数列是以为首项,为公比的等比数列,所以由等比数列的求和公式得,解得【点睛】本题考查利用等比数列的定义求通项公式以及等比数列的求和公式,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)0.【解析】

(1)药物在白鼠血液内的浓度y与时间t的关系为:当a=1时,y=y1+y2;①当0<t<1时,y=﹣t4=﹣()2,所以ymax=f();②当1≤t≤3时,∵,所以ymax=7﹣2(当t时取到),因为,故ymax=f().(2)由题意y①⇒⇒,又0<t<1,得出a≤1;②⇒⇒由于1≤t≤3得到,令,则,所以,综上得到以0.18、(1)(2)【解析】

(1)由正弦定理可得,结合,可求出与;(2)由余弦定理可得,结合基本不等式可得,即可求出,从而可求出的最大值.【详解】解:(1)因为,所以,又,所以,又是锐角三角形,则.(2)因为,,,所以,所以,即(当且仅当时取等号),故.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.19、(I)选择更适宜作为产卵数关于温度的回归方程类型;(II);(III)要使得产卵数不超过50,则温度控制在以下.【解析】

(I)由于散点图类似指数函数的图像,由此选择.(II)对;两边取以为底底而得对数,将非线性回归的问题转化为线性回归的问题,利用回归直线方程的计算公式计算出回归直线方程,进而化简为回归曲线方程.(III)令,解指数不等式求得温度的控制范围.【详解】(I)依散点图可知,选择更适宜作为产卵数关于温度的回归方程类型。(II)因为,令,所以与可看成线性回归,,所以,所以,即,(III)由即,解得,要使得产卵数不超过50,则温度控制在以下。【点睛】本小题主要考查散点图的判断,考查非线性回归的求解方法,考查线性归回直线方程的计算公式,考查了利用回归方程进行预测.属于中档题.解题的关键点有两个,首先是根据散点图选择出恰当的回归方程,其次是要将非线性回归的问题,转化为线性回归来求解.20、(1)(2)【解析】试题分析:(1)由,得,利用正弦定理统一到角上易得(2)根据题意,得,由余弦定理,得,结合均值不等式可得,所以的最大值为4,又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论