版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省黑河市数学高一下期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形2.实数满足,则的取值范围为()A. B. C. D.3.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元,甲、乙电视台的广告费标准分别是500元/分钟和200元/分钟,假设甲、乙两个电视台为该公司做的广告能给公司带来的收益分别为0.4万元/分钟和0.2万元/分钟,那么该公司合理分配在甲、乙两个电视台的广告时间,能使公司获得最大的收益是()万元A.72 B.80 C.84 D.904.运行如图程序,若输入的是,则输出的结果是()A.3 B.9 C.0 D.5.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.6.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.7.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.160.30.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26 C.0.56 D.0.748.若,则下列不等式恒成立的是()A. B. C. D.9.若,,,,则等于()A. B. C. D.10.圆x-12+y-3A.1 B.2 C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.___________.12.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.13.已知向量,则___________.14.中,,,,则______.15.已知,且,则的值是_______.16.若数列满足(),且,,__.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)化简;(2)若是第二象限角,且,求的值.18.已知为常数且均不为零,数列的通项公式为并且成等差数列,成等比数列.(1)求的值;(2)设是数列前项的和,求使得不等式成立的最小正整数.19.已知海岛在海岛北偏东,,相距海里,物体甲从海岛以海里/小时的速度沿直线向海岛移动,同时物体乙从海岛沿着海岛北偏西方向以海里/小时的速度移动.(1)问经过多长时间,物体甲在物体乙的正东方向;(2)求甲从海岛到达海岛的过程中,甲、乙两物体的最短距离.20.关于的不等式,其中为大于0的常数。(1)若不等式的解集为,求实数的取值范围;(2)若不等式的解集为,且中恰好含有三个整数,求实数的取值范围.21.已知点.(1)求中边上的高所在直线的方程;(2)求过三点的圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【点睛】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.2、A【解析】
画出可行域,平移基准直线到可行域边界的位置,由此求得目标函数的取值范围.【详解】画出可行域如下图所示,平移基准直线到可行域边界的位置,由图可知目标函数分别在出取的最小值和最大值,最小值为,最大值为,故的取值范围是,故选A.【点睛】本小题主要考查线性规划求最大值和最小值,考查数形结合的数学思想方法,属于基础题.3、B【解析】
设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,根据题意得到约束条件,目标函数,平行目标函数图象找到在纵轴上截距最大时所经过的点,把点的坐标代入目标函数中即可.【详解】设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,则由题意可得可行解域:,目标函数为可行解域化简得,,在平面直角坐标系内,画出可行解域,如下图所示:作直线,即,平行移动直线,当直线过点时,目标函数取得最大值,联立,解得,所以点坐标为,因此目标函数最大值为,故本题选B.【点睛】本题考查了应用线性规划知识解决实际问题的能力,正确列出约束条件,画出可行解域是解题的关键.4、B【解析】分析:首先根据框图中的条件,判断-2与1的大小,从而确定出代入哪个解析式,从而求得最后的结果,得到输出的值.详解:首先判断成立,代入中,得到,从而输出的结果为9,故选B.点睛:该题考查的是有关程序框图的问题,在解题的过程中,需要注意的是要明确自变量的范围,对应的函数解析式应该代入哪个,从而求得最后的结果,属于简单题目.5、D【解析】
求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.6、B【解析】
根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【点睛】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.7、D【解析】
利用互斥事件概率计算公式直接求解.【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:.故选:D.【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题.8、D【解析】
利用不等式的性质、对数、指数函数的图像和性质,对每一个选项逐一分析判断得解.【详解】对于选项A,不一定成立,如a=1>b=-2,但是,所以该选项是错误的;对于选项B,所以该选项是错误的;对于选项C,ab符号不确定,所以不一定成立,所以该选项是错误的;对于选项D,因为a>b,所以,所以该选项是正确的.故选D【点睛】本题主要考查不等式的性质,考查对数、指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、C【解析】
利用同角三角函数的基本关系求出与,然后利用两角差的余弦公式求出值.【详解】,,则,,则,所以,,因此,,故选C.【点睛】本题考查利用两角和的余弦公式求值,解决这类求值问题需要注意以下两点:①利用同角三角平方关系求值时,要求对象角的范围,确定所求值的正负;②利用已知角来配凑未知角,然后利用合适的公式求解.10、C【解析】
先计算圆心到y轴的距离,再利用勾股定理得到弦长.【详解】x-12+y-32=2圆心到y轴的距离d=1弦长l=2r故答案选C【点睛】本题考查了圆的弦长公式,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先将写成的形式,再根据诱导公式进行求解.【详解】由题意得:.故答案为:.【点睛】考查三角函数的诱导公式.,,,,.12、【解析】
由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.13、【解析】
根据向量夹角公式可求出结果.【详解】.【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.14、【解析】
根据,得到的值,再由余弦定理,得到的值.【详解】因为,所以,在中,,,由余弦定理得.所以.故答案为:【点睛】本题考查二倍角的余弦公式,余弦定理解三角形,属于简单题.15、【解析】
计算出的值,然后利用诱导公式可求得的值.【详解】,,则,因此,.故答案为:.【点睛】本题考查利用诱导公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于基础题.16、1【解析】
由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用三角函数的诱导公式即可求解.(2)利用诱导公式可得,再利用同角三角函数的基本关系即可求解.【详解】(1)由题意得.(2)∵,∴.又为第二象限角,∴,∴.【点睛】本题考查了三角函数的诱导公式以及同角三角函数的基本关系,属于基础题.18、(1);(2)【解析】
(1)由,可得,,,.根据、、成等差数列,、、成等比数列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分别利用等差数列与等比数列的求和公式即可得出.【详解】(1),,,,.,,成等差数列,,,成等比数列.,,,,,.联立解得:,.(2)由(1)可得:,,由,解得..【点睛】本题考查等差数列与等比数列的通项公式与求和公式及其性质、分类讨论方法、不等式的解法,考查推理能力与计算能力,属于中档题.19、(1)小时;(2)海里.【解析】
试题分析:(1)设经过小时,物体甲在物体乙的正东方向,因为小时,所以.则物体甲与海岛的距离为海里,物体乙与海岛距离为海里.在中由正弦定理可求得的值.(2)在中用余弦定理求,再根据二次函数求的最小值.试题解析:解:(1)设经过小时,物体甲在物体乙的正东方向.如图所示,物体甲与海岛的距离为海里,物体乙与海岛距离为海里,,中,由正弦定理得:,即,则.(2)由(1)题设,,,由余弦定理得:∵,∴当时,海里.考点:1正弦定理;2余弦定理;3二次函数求最值.20、(1);(2)【解析】
(1)关于的不等式的解集为,得出判别式△,且,由此求出的取值范围;(2)由题意知判别式△,设,利用对称轴以及(1),,得出不等式的解集中恰好有三个整数,等价于,由此求出的取值范围.【详解】(1)由题意得一元二次不等式对应方程的判别式,结合,解得.(2)由题意得一元二次不等式对应方程的判别式,解得.又,所以.设,其对称轴为.注意到,,对称轴,所以不等式解集中恰好有三个整数只能是1、2、3,此时中恰好含有三个整数等价于:,解得.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《园林设计初步》2022-2023学年第一学期期末试卷
- 门卫室施工组织设计方案
- 石河子大学《水利工程监理》2023-2024学年第一学期期末试卷
- 石河子大学《临床技能学二》2021-2022学年第一学期期末试卷
- 石河子大学《工业制剂综合实验》2022-2023学年第一学期期末试卷
- 沈阳理工大学《数字信号处理》2023-2024学年第一学期期末试卷
- 沈阳理工大学《面向对象程序设计(C++)》2022-2023学年期末试卷
- 沈阳理工大学《翻译技能综合训练》2022-2023学年第一学期期末试卷
- 沈阳理工大学《车辆振动与噪声控制》2023-2024学年期末试卷
- 沈阳理工大学《包装设计》2023-2024学年第一学期期末试卷
- 华医网继续教育《医务人员职业素质修养与执业法律知识》考试题及答案
- 2022版义务教育(数学)课程标准(含2022年新增和修订部分)
- Hellp综合征专题知识
- 西亚、中亚、北非音乐课件
- 科技政策及科技项目
- 全国英语教师素养大赛大赛一等奖乌鸦喝水Unit-5-Story-Time课件
- 我是一只有个性的狼教学设计及课后反思
- 苏教版六年级科学(上册)第二单元遗传与变异单元测试卷(含答案)
- 中小学德育工作评价细则
- 2022年浙江公务员考试申论真题及答案(A卷)
- 关于增加体检科的可行性报告
评论
0/150
提交评论