版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市涪陵高级中学2025届高一下数学期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若且,则下列不等式成立的是()A. B. C. D.2.已知点是直线上一动点,与是圆的两条切线,为切点,则四边形的最小面积为()A. B. C. D.3.设是上的偶函数,且在上是减函数,若且,则()A. B.C. D.与大小不确定4.某数学竞赛小组有3名男同学和2名女同学,现从这5名同学中随机选出2人参加数学竞赛(每人被选到的可能性相同).则选出的2人中恰有1名男同学和1名女同学的概率为()A. B. C. D.5.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件6.某正弦型函数的图像如图,则该函数的解析式可以为().A. B.C. D.7.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10 C.12 D.138.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A.若,则B.若,则C.若,则D.若,则9.已知组数据,,…,的平均数为2,方差为5,则数据2+1,2+1,…,2+1的平均数与方差分别为()A.=4,=10 B.=5,=11C.=5,=20 D.=5,=2110.已知中,,则角()A.60°或120° B.30°或90° C.30° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________12.长时间的低头,对人的身体如颈椎、眼睛等会造成定的损害,为了了解某群体中“低头族”的比例,现从该群体包含老、中、青三个年龄段的人中采用分层抽样的方法抽取人进行调查,已知这人里老、中、青三个年龄段的分配比例如图所示,则这个群体里青年人人数为_____13.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.14.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.15.设向量,且,则__________.16.在中,角,,所对的边分别为,,,若,则角最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的公比,前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.18.已知等差数列{an}满足a2=0,a6+a8=-10.(1)求数列{an}的通项公式;(2)求数列的前n项和.19.已知数列的前项和为,且满足.(1)求的值;(2)证明是等比数列,并求;(3)若,数列的前项和为.20.如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且,,.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.21.某厂每年生产某种产品万件,其成本包含固定成本和浮动成本两部分.已知每年固定成本为20万元,浮动成本,.若每万件该产品销售价格为40万元,且每年该产品产销平衡.(1)设年利润为(万元),试求与的关系式;(2)年产量为多少万件时,该厂所获利润最大?并求出最大利润.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用不等式的性质对四个选项逐一判断.【详解】选项A:,符合,但不等式不成立,故本选项是错误的;选项B:当符合已知条件,但零没有倒数,故不成立,故本选项是错误的;选项C:当时,不成立,故本选项是错误的;选项D:因为,所以根据不等式的性质,由能推出,故本选项是正确的,因此本题选D.【点睛】本题考查了不等式的性质,结合不等式的性质,举特例是解决这类问题的常见方法.2、A【解析】
利用当与直线垂直时,取最小值,并利用点到直线的距离公式计算出的最小值,然后利用勾股定理计算出、的最小值,最后利用三角形的面积公式可求出四边形面积的最小值.【详解】如下图所示:由切线的性质可知,,,且,,当取最小值时,、也取得最小值,显然当与直线垂直时,取最小值,且该最小值为点到直线的距离,即,此时,,四边形面积的最小值为,故选A.【点睛】本题考查直线与圆的位置关系,考查切线长的计算以及四边形的面积,本题在求解切线长的最小值时,要抓住以下两点:(1)计算切线长应利用勾股定理,即以点到圆心的距离为斜边,切线长与半径为两直角边;(2)切线长取最小值时,点到圆心的距离也取到最小值.3、A【解析】试题分析:由是上的偶函数,且在上是减函数,所以在上是增函数,因为且,所以,所以,又因为,所以,故选A.考点:函数奇偶性与单调性的综合应用.【方法点晴】本题主要考查了函数的单调性与奇偶性的综合应用,其中解答中涉及函数的单调性和函数奇偶性的应用等知识点,本题的解答中先利用偶函数的图象的对称性得出在上是增函数,然后在利用题设条案件把自变量转化到区间上是解答的关键,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,试题有一定的难度,属于中档试题.4、A【解析】
把5名学生编号,然后写出任取2人的所有可能,按要求计数后可得概率.【详解】3名男生编号为,两名女生编号为,任选2人的所有情形为:,,共10种,其中恰有1名男生1名女生的有共6种,所以所求概率为.【点睛】本题考查古典概型,方法是列举法.5、C【解析】
结合正弦定理,利用充分条件和必要条件的定义进行判断【详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【点睛】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题6、C【解析】试题分析:由图象可得最大值为2,则A=2,周期,∴∴,又,是五点法中的第一个点,∴,∴把A,B排除,对于C:,故选C考点:本题考查函数的图象和性质点评:解决本题的关键是确定的值7、D【解析】试题分析::∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=1.考点:分层抽样方法8、D【解析】
根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【点睛】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.9、C【解析】
根据题意,利用数据的平均数和方差的性质分析可得答案.【详解】根据题意,数据,,,的平均数为2,方差为5,则数据,,,的平均数,其方差;故选.【点睛】本题考查数据的平均数、方差的计算,关键是掌握数据的平均数、方差的计算公式,属于基础题.10、B【解析】
由正弦定理求得,再求.【详解】由正弦定理,∴,或,时,,时,.故选:B.【点睛】本题考查正弦定理,在用正弦定理解三角形时,可能会出现两解,一定要注意.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】
根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.12、【解析】
根据饼状图得到青年人的分配比例;利用总数乘以比例即可得到青年人的人数.【详解】由饼状图可知青年人的分配比例为:这个群体里青年人的人数为:人本题正确结果:【点睛】本题考查分层抽样知识的应用,属于基础题.13、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)14、【解析】
求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【详解】解:在中,由,且,
得,得.
当且仅当时,有最大值1.
过球心,且四面体的体积为1,
∴三棱锥的体积为.
则到平面的距离为.
此时的外接圆的半径为,则球的半径的最小值为,
∴球O的表面积的最小值为.
故答案为:.【点睛】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.15、【解析】因为,所以,故答案为.16、【解析】
根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】
(1)根据条件列出等式,求解公比后即可求解出通项公式;(2)错位相减法求和,注意对于“错位”的理解.【详解】解:(1)由,得,则∴,∴数列的通项公式为.(2)由,∴,①,②①②,得,∴.【点睛】本题考查等比数列通项和求和,难度较易.对于等差乘以等比的形式的数列,求和注意选用错位相减法.18、(1);(2).【解析】
(1)设等差数列{an}的公差为d,由已知条件可得,解得,故数列{an}的通项公式为an=2-n.(2)设数列的前n项和为Sn,∵,∴Sn=-记Tn=,①则Tn=,②①-②得:Tn=1+,∴Tn=-,即Tn=4-.∴Sn=-4+=4-4+=.19、(1)2,6,14;(2)(3)【解析】
(1)通过代入,可求得前3项;(2)利用已知求的方法,求解;(3)首先求得数列的通项公式,将通项分成两部分,一部分利用错位相减法求和,另一部分常数列求和.【详解】(1)当时,,解得;当时,,解得;当时,,解得.(2)当时,两式相减,,且时首项为4,公比为2的等比数列.(3)根据(2)可知,,设,设其前项和为,两式相减可得解得,数列,前项和为,数列的前项和是【点睛】本题考查了已知求的方法,利用错位相减法求和属于基础中档题型.20、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析【解析】
(Ⅰ)转化为证明;(Ⅱ)转化为证明,;(Ⅲ)根据线面平行的性质定理.【详解】(Ⅰ)因为四边形为正方形,所以,由于平面,平面,所以平面.(Ⅱ)因为四边形为正方形,所以.平面平面,平面平面,所以平面.所以.取中点,连接.由,,,可得四边形为正方形.所以.所以.所以.因为,所以平面.(Ⅲ)存在,当为的中点时,平面,此时.证明如下:连接交于点,由于四边形为正方形,所以是的中点,同时也是的中点.因为,又四边形为正方形,所以,连接,所以四边形为平行四边形.所以.又因为平面,平面,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《园林设计初步》2022-2023学年第一学期期末试卷
- 门卫室施工组织设计方案
- 石河子大学《水利工程监理》2023-2024学年第一学期期末试卷
- 石河子大学《临床技能学二》2021-2022学年第一学期期末试卷
- 石河子大学《工业制剂综合实验》2022-2023学年第一学期期末试卷
- 沈阳理工大学《数字信号处理》2023-2024学年第一学期期末试卷
- 沈阳理工大学《面向对象程序设计(C++)》2022-2023学年期末试卷
- 沈阳理工大学《翻译技能综合训练》2022-2023学年第一学期期末试卷
- 沈阳理工大学《车辆振动与噪声控制》2023-2024学年期末试卷
- 沈阳理工大学《包装设计》2023-2024学年第一学期期末试卷
- 急性胰腺炎的诊断与处理:国内外主要指南的比较与解读
- 电大财务大数据分析编程作业5
- (正式版)HGT 2782-2024 化工催化剂颗粒抗压碎力的测定
- 小学科普社团活动方案
- DG-TJ08-2413-2023 优.秀历史建筑外墙修缮技术标准
- 家用光伏发电储能装置的设计
- 2024-2029全球及中国客户服务BPO行业市场发展分析及前景趋势与投资发展研究报告
- 某污水处理设备质量保证措施
- AR眼镜简介介绍
- 艺术与体育的研究报告
- 2024年宣传片拍摄保密协议doc-(含多场合)
评论
0/150
提交评论