甘肃省白银市育正学校2025届高一数学第二学期期末学业质量监测试题含解析_第1页
甘肃省白银市育正学校2025届高一数学第二学期期末学业质量监测试题含解析_第2页
甘肃省白银市育正学校2025届高一数学第二学期期末学业质量监测试题含解析_第3页
甘肃省白银市育正学校2025届高一数学第二学期期末学业质量监测试题含解析_第4页
甘肃省白银市育正学校2025届高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省白银市育正学校2025届高一数学第二学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两条直线m,n,两个平面α,β,下列命题正确是()A.m∥n,m∥α⇒n∥α B.α∥β,m⊂α,n⊂β⇒m∥nC.α⊥β,m⊂α,n⊂β⇒m⊥n D.α∥β,m∥n,m⊥α⇒n⊥β2.已知,,O是坐标原点,则()A. B. C. D.3.已知是等差数列的前项和,.若对恒成立,则正整数构成的集合是()A. B. C. D.4.已知中,,,点是的中点,是边上一点,则的最小值是()A. B. C. D.5.如图,在平行四边形中,下列结论中错误的是()A. B. C. D.6.给定函数:①;②;③;④,其中奇函数是()A.① B.② C.③ D.④7.已知等差数列中,若,则取最小值时的()A.9 B.8 C.7 D.68.已知a、b、c分别是△ABC的内角A、B、C的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形9.在等差数列中,,则数列前项和取最大值时,的值等于()A.12 B.11 C.10 D.910.已知,成等差数列,成等比数列,则的最小值是A.0 B.1 C.2 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为________12.已知数列的前项和是,且,则______.(写出两个即可)13.已知数列的通项公式,,前项和达到最大值时,的值为______.14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.15.某四棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该四棱锥最长棱的棱长为.16.若一组样本数据,,,,的平均数为,则该组样本数据的方差为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、.18.设数列为等比数列,且,,(1)求数列的通项公式:(2)设,数列的前项和,求证:.19.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.20.已知△ABC内角A,B,C的对边分别是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面积的最大值.21.(1)求证:(2)请利用(1)的结论证明:(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:(4)化简:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

在A中,n∥α或n⊂α;在B中,m与n平行或异面;在C中,m与n相交、平行或异面;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β.【详解】由两条直线m,n,两个平面α,β,知:在A中,m∥n,m∥α⇒n∥α或n⊂α,故A错误;在B中,α∥β,m⊂α,n⊂β⇒m与n平行或异面,故B错误;在C中,α⊥β,m⊂α,n⊂β⇒m与n相交、平行或异面,故C错误;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β,故D正确.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.2、D【解析】

根据向量线性运算可得,由坐标可得结果.【详解】故选:【点睛】本题考查平面向量的线性运算,属于基础题.3、A【解析】

先分析出,即得k的值.【详解】因为因为所以.所以,所以正整数构成的集合是.故选A【点睛】本题主要考查等差数列前n项和的最小值的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.4、B【解析】

通过建系以及数量积的坐标运算,从而转化为函数的最值问题.【详解】根据题意,建立图示直角坐标系,,,则,,,.设,则,是边上一点,当时,取得最小值,故选.【点睛】本题主要考察解析法在向量中的应用,将平面向量的数量积转化成了函数的最值问题.5、C【解析】

根据向量的定义及运算法则一一分析选项正误即可.【详解】在平行四边形中,显然有,,故A,D正确;根据向量的平行四边形法则,可知,故B正确;根据向量的三角形法,,故C错误;故选:C.【点睛】本题考查平面向量的基本定义和运算法则,属于基础题.6、D【解析】试题分析:,知偶函数,,知非奇非偶,知偶函数,,知奇函数.考点:函数奇偶性定义.7、C【解析】

是等差数列,先根据已知求出首项和公差,再表示出,由的最小值确定n。【详解】由题得,,解得,那么,当n=7时,取到最小值-49.故选:C【点睛】本题考查等差数列前n项和,是基础题。8、A【解析】

将原式进行变形,再利用内角和定理转化,最后可得角B的范围,可得三角形形状.【详解】因为在三角形中,变形为由内角和定理可得化简可得:所以所以三角形为钝角三角形故选A【点睛】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.9、C【解析】试题分析:最大,考点:数列单调性点评:求解本题的关键是由已知得到数列是递减数列,进而转化为寻找最小的正数项10、D【解析】解:∵x,a,b,y成等差数列,x,c,d,y成等比数列根据等差数列和等比数列的性质可知:a+b=x+y,cd=xy,当且仅当x=y时取“=”,二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据的最小正周期判断即可.【详解】因为的最小正周期均为,故的最小正周期为.故答案为:【点睛】本题主要考查了正切余切函数的周期,属于基础题型.12、或【解析】

利用已知求的公式,即可算出结果.【详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【点睛】本题主要考查利用与的关系公式,即,求的方法应用.13、或【解析】

令,求出的取值范围,即可得出达到最大值时对应的值.【详解】令,解得,因此,当或时,前项和达到最大值.故答案为:或.【点睛】本题考查等差数列前项和最值的求解,可以利用关于的二次函数,由二次函数的基本性质求得,也可以利用等差数列所有非正项或非负项相加即得,考查计算能力,属于基础题.14、1【解析】应从丙种型号的产品中抽取件,故答案为1.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即ni∶Ni=n∶N.15、【解析】

先通过拔高法还原三视图为一个四棱锥,再根据图像找到最长棱计算即可。【详解】根据拔高法还原三视图,可得斜棱长最长,所以斜棱长为。【点睛】此题考查简单三视图还原,关键点通过拔高法将三视图还原易求解,属于较易题目。16、【解析】因为该组样本数据的平均数为2017,所以,解得,则该组样本数据的方差为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.详解:由题意,如图,,连接,则是的重心,连接交于点,则是的中点,∴点在上,∴,故答案为;;∴.点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).18、(1)(2)详见解析【解析】

(1)将已知条件转化为等比数列的基本量和,得到的值,从而得到数列的通项;(2)根据题意写出,然后得到数列的通项,利用列项相消法进行求和,得到其前项和,然后进行证明.【详解】设等比数列的首项为,公比为,因为,所以,所以所以;(2),所以,所以.因为,所以.【点睛】本题考查等比数列的基本量计算,裂项相消法求数列的和,属于简单题.19、(1)(2)【解析】

(1)由和可列出方程组,解出和,即得通项公式;(2)将(1)中所得通项公式代入,列项,用裂项相消法求的前n项和.【详解】解:(1)因为,,所以因为,所以故的通项公式为.(2)因为,所以.【点睛】本题考查求等差数列通项公式和用裂项相消法求数列前n项和,是典型考题.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用正弦定理,三角函数恒等变换,可得,结合范围,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面积公式即可求解;方法2:由正弦定理可得,,并将其代入可得,然后再化简,根据正弦函数的图象和性质即可求得面积的最大值.【详解】解:(I)因为,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以当且仅当时取等号,所以△ABC面积的最大值为方法2:因为,所以,,所以,所以,当且仅当,即,当时取等号.所以△ABC面积的最大值为.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形的面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21、(1)证明见解析,(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论