2025届安徽省宿州市时村中学高一数学第二学期期末统考模拟试题含解析_第1页
2025届安徽省宿州市时村中学高一数学第二学期期末统考模拟试题含解析_第2页
2025届安徽省宿州市时村中学高一数学第二学期期末统考模拟试题含解析_第3页
2025届安徽省宿州市时村中学高一数学第二学期期末统考模拟试题含解析_第4页
2025届安徽省宿州市时村中学高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省宿州市时村中学高一数学第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为A.16 B.24 C.32 D.482.已知非零向量与的夹角为,且,则()A.1 B.2 C. D.3.在中,已知,则的面积为()A. B. C. D.4.已知正实数满足,则的最小值()A.2 B.3 C.4 D.5.已知直线与圆C相切于点,且圆C的圆心在y轴上,则圆C的标准方程为()A. B.C. D.6.将函数y=sin2x的图象向右平移A.在区间[-πB.在区间[5πC.在区间[-πD.在区间[π7.在正项等比数列中,,则()A. B. C. D.8.在中,,则()A. B. C. D.9.某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是()A.B.甲得分的方差是736C.乙得分的中位数和众数都为26D.乙得分的方差小于甲得分的方差10.设,则的大小关系为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.正项等比数列中,,,则公比__________.12.已知则sin2x的值为________.13.已知数列中,,,设,若对任意的正整数,当时,不等式恒成立,则实数的取值范围是______.14.已知函数一个周期的图象(如下图),则这个函数的解析式为__________.15.设函数,则________.16.已知无穷等比数列的所有项的和为,则首项的取值范围为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角的对边分别为,已知.(1)求角的大小;(2)若为锐角三角形,且,求面积的取值范围.18.在△中,,,且.(Ⅰ)求的值;(Ⅱ)求的大小.19.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的值域.20.已知函数,.(1)求函数在上的单调递增区间;(2)在中,内角、、所对边的长分别是,若,,,求的面积的值.21.近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为,去除推进剂后的火箭有效载荷质量为,火箭的飞行速度为,初始速度为,已知其关系式为齐奥尔科夫斯基公式:,其中是火箭发动机喷流相对火箭的速度,假设,,,是以为底的自然对数,,.(1)如果希望火箭飞行速度分别达到第一宇宙速度、第二宇宙速度、第三宇宙速度时,求的值(精确到小数点后面1位).(2)如果希望达到,但火箭起飞质量最大值为,请问的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据分层抽样各层在总体的比例与在样本的比例相同求解.【详解】因为分层抽样总体和各层的抽样比例相同,所以各层在总体的比例与在样本的比例相同,所以样本中乙类型饮品的数量为.故选B.【点睛】本题考查分层抽样,依据分层抽样总体和各层的抽样比例相同.2、B【解析】

根据条件可求出,从而对两边平方即可得出,解出即可.【详解】向量与的夹角为,且;;;;或0(舍去);.故选:.【点睛】本题主要考查了向量数量积的定义及数量积的运算公式,属于中档题.3、B【解析】

根据三角形的面积公式求解即可.【详解】的面积.

故选:B【点睛】本题主要考查了三角形的面积公式,属于基础题.4、B【解析】

,当且仅当,即,时的最小值为3.故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.5、C【解析】

先代入点可得,再根据斜率关系列式可得圆心坐标,然后求出半径,写出标准方程.【详解】将切点代入切线方程可得:,解得,设圆心为,所以,解得,所以圆的半径,所以圆的标准方程为.故选:.【点睛】本题考查了直线与圆的位置关系,属中档题.6、A【解析】

函数y=sin2x的图象向右平移y=sin2kπ-π单调递减区间:2kπ+π2≤2x-π3【详解】本题考查了正弦型函数图象的平移变换以及求正弦型函数的单调区间.7、D【解析】

结合对数的运算,得到,即可求解.【详解】由题意,在正项等比数列中,,则.故选:D.【点睛】本题主要考查了等比数列的性质,以及对数的运算求值,其中解答中熟记等比数列的性质,合理应用对数的运算求解是解答的关键,着重考查了推理与计算能力,属于基础题.8、B【解析】

根据向量的三角形法则进行转化求解即可.【详解】∵,∴,又则故选:B【点睛】本题考查向量加减混合运算及其几何意义,灵活应用向量运算的三角形法则即可求解,属于基础题.9、B【解析】

根据题意,依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A,甲得分的极差为32,30+x﹣6=32,解得:x=8,A正确,对于B,甲得分的平均值为,其方差为,B错误;对于C,乙的数据为:12、25、26、26、31,其中位数、众数都是26,C正确,对于D,乙得分比较集中,则乙得分的方差小于甲得分的方差,D正确;故选:B.【点睛】本题考查茎叶图的应用,涉及数据极差、平均数、中位数、众数、方差的计算,属于基础题.10、B【解析】

不难发现从而可得【详解】,故选B.【点睛】本题考查利用指数函数和对数函数的单调性比较数大小.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意,由等比数列的性质可得,进而分析可得答案.【详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【点睛】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】

利用二倍角的余弦函数公式求出的值,再利用诱导公式化简,将的值代入计算即可求出值.【详解】解:∵,,则sin2x==,故答案为.【点睛】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.13、【解析】∵,(,),当时,,,…,,并项相加,得:,

∴,又∵当时,也满足上式,

∴数列的通项公式为,∴

,令(),则,∵当时,恒成立,∴在上是增函数,

故当时,,即当时,,对任意的正整数,当时,不等式恒成立,则须使,即对恒成立,即的最小值,可得,∴实数的取值范围为,故答案为.点睛:本题考查数列的通项及前项和,涉及利用导数研究函数的单调性,考查运算求解能力,注意解题方法的积累,属于难题通过并项相加可知当时,进而可得数列的通项公式,裂项、并项相加可知,通过求导可知是增函数,进而问题转化为,由恒成立思想,即可得结论.14、【解析】

由函数的图象可得T=﹣,解得:T==π,解得ω=1.图象经过(,1),可得:1=sin(1×+φ),解得:φ=1kπ+,k∈Z,由于:|φ|<,可得:φ=,故f(x)的解析式为:f(x)=.故答案为f(x)=.15、【解析】

利用反三角函数的定义,解方程即可.【详解】因为函数,由反三角函数的定义,解方程,得,所以.故答案为:【点睛】本题考查了反三角函数的定义,属于基础题.16、【解析】

设等比数列的公比为,根据题意得出或,根据无穷等比数列的和得出与所满足的关系式,由此可求出实数的取值范围.【详解】设等比数列的公比为,根据题意得出或,由于无穷等比数列的所有项的和为,则,.当时,则,此时,;当时,则,此时,.因此,首项的取值范围是.故答案为:.【点睛】本题考查利用无穷等比数列的和求首项的取值范围,解题的关键就是结合题意得出首项和公比的关系式,利用不等式的性质或函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用正弦定理边角互化的思想以及两角和的正弦公式、三角形的内角和定理以及诱导公式求出的值,结合角的范围求出角的值;(2)由三角形的面积公式得,由正弦定理结合内角和定理得出,利用为锐角三角形得出的取值范围,可求出的范围,进而求出面积的取值范围.【详解】(1),由正弦定理边角互化思想得,所以,,,,,;(2)由题设及(1)知的面积.由正弦定理得.由于为锐角三角形,故,由(1)知,所以,故,从而.因此面积的取值范围是.【点睛】本题考查正弦定理解三角形以及三角形面积的取值范围的求解,在解三角形中,等式中含有边有角,且边的次数相等时,可以利用边角互化的思想求解,一般优先是边化为角的正弦值,求解三角形中的取值范围问题时,利用正弦定理结合三角函数思想进行求解,考查计算能力,属于中等题.18、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)通过正弦定理易得,代入即可.(Ⅱ)三边长知道通过余弦定理即可求得的大小.【详解】(Ⅰ)因为,所以由正弦定理可得.因为,所以.(Ⅱ)由余弦定理.因为三角形内角,所以.【点睛】此题考查正弦定理和余弦定理,记住公式很容易求解,属于简单题目.19、(1);(2)【解析】

(1)由二倍角公式,并结合辅助角公式可得,再利用周期可求出答案;(2)由的范围,可求得的范围,进而可求出的范围,从而可求得的值域.【详解】(1),∴函数的最小正周期为.(2)∵,∴,∴,∴,∴函数在区间的值域为.【点睛】本题考查三角函数的恒等变换,考查三角函数的周期及值域,考查学生的计算求解能力,属于基础题.20、(1),;(2).【解析】

(1)首先把化成的型式,再根据三角函的单调性即可解决(2)根据(1)结果把代入可得A的大小,从而计算出B的大小,根据正弦定理以及面积公式即可解决。【详解】(1)因为,由,,得,,又,所以或,所以函数在上的递增区间为:,;(2)因为,∴,∴,∴,,∴,,∵,∴.∴,在三角形中由正弦定理得,∴,.【点睛】本题主要考查了三角函数问题以及解三角形问题。三角函数问题常考周期、单调性最值等,在解三角形中长考的有正弦定理、余弦定理以及面积公式。21、(1)(2)见解析【解析】

(1)弄清题意,将相关数据代入齐奥尔科夫斯基公式:,即可得出各个等级的速度对应的的值;(2)弄清题意与相关名词,火箭起飞质量即为,将公式变形,分离出,解不等式即可得,的最小值为.【详解】(1)由题意可得,,,且,,当达到第一宇宙速度时,有,;当达到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论