版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题08期中选择填空必刷(压轴18考点53题)一.二次根式有意义的条件(共2小题)1.已知a、b满足,则=()A.4 B.8 C.2024 D.40482.若|2017﹣m|+=m,则m﹣20172=.二.二次根式的性质与化简(共6小题)3.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A. B. C. D.4.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4 B.2a C.2b D.2a﹣2b5.已知T1===,T2===,T3===,…Tn=,其中n为正整数.设Sn=T1+T2+T3+…+Tn,则S2021值是()A.2021 B.2022 C.2021 D.20226.化简﹣a的结果是()A.﹣2a B.﹣2a C.0 D.2a7.已知实数a,b在数轴上的位置如图所示,则=()A.2b﹣2a B.﹣2a C.﹣2b﹣2a D.2a8.实数a在数轴上的位置如图所示,化简:|a﹣2|+=.三.二次根式的混合运算(共2小题)9.已知a为实数,且与都是整数,则a的值是.10.利用平方与开平方互为逆运算的关系,可以将某些无理数进行如下操作:当a=+1时,移项得a﹣1=,两边平方得,所以a2﹣2a+1=3,即得到整系数方程:a2﹣2a﹣2=0.仿照上述操作方法,完成下面的问题:当a=时,(1)得到的整系数方程为;(2)计算:a3﹣2a+2024=.四.二次根式的化简求值(共1小题)11.因为,所以,的整数部分为2,小数部分为;设的小数部分为x,的整数部分为y,则=.五.二次根式的应用(共1小题)12.已知三角形的三边长分别为a、b、c,求其面积.对此问题,中外数学家曾经进行过深入研究.古希腊几何学家海伦(Heron,约公元50年),给出了求其面积的海伦公式:S=,其中p=.①我国南宋时期数学家秦九韶(约1202~1261),给出了著名的秦九韶公式:S=.②若一个三角形的三边长依次为,,,请选用适当的公式求出这个三角形的面积为()A. B. C. D.六.勾股定理(共8小题)13.如图,网格中的每个小正方形的边长为1,△ABC的顶点A、B、C均在网格的格点上,BD⊥AC于点D,则BD的长为()A. B. C. D.14.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.16 B.18 C.20 D.2215.如图,已知Rt△ABC中,∠ACB=90°.AC=3,BC=4.以AB、BC、AC为直径作半圆围成两月形,则阴影部分的面积为()A.5 B.6 C.7 D.816.如图,在△ABC中,∠ABC=90°,BC=4,AB=8,P为AC边上的一个动点,D为PB上的一个动点,连接AD,当∠CBP=∠BAD时,线段CD的最小值是()A. B.2 C. D.17.图1叫做一个基本的“勾股树”,也叫做第一代勾股树.让图1中两个小正方形各自长出一个新的勾股树(如图2),叫做第二代勾股树.从第二代勾股树出发,又可以长出第三代勾股树(如图3).这样一生二、二生四、四生八,继续生长下去,则第四代勾股树图形中正方形的个数为.18.如图,在△ABC中,∠ACB=90°,AC=9,BC=5,点P为△ABC内一动点.过点P作PD⊥AC于点D,交AB于点E.若△BCP为等腰三角形,且S△PBC=,则PD的长为.19.如图,在△ABC中,∠ACB=90°,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+BC=7,空白部分面积为16,则图中阴影部分的面积是.20.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=.七.勾股定理的证明(共6小题)21.如图,四个全等的直角三角形拼成“赵爽弦图”,其中四边形ABCD与四边形EFGH都是正方形.连结DG并延长,交BC于点P,点P为BC的中点.若EF=2,则AE的长为()A.4 B. C. D.22.如图,在四边形ABDE中,AB∥DE,AB⊥BD,点C是边BD上一点,BC=DE=a,CD=AB=b,AC=CE=c.下列结论:①△ABC≌△CDE;②∠ACE=90°;③ab;④该图可以验证勾股定理.其中正确的结论个数是()A.4 B.3 C.2 D.123.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是()A.S1=a2+b2+2ab B.S1=a2+b2+ab C.S2=c2 D.S2=c2+ab24.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76 B.57 C.38 D.1925.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形的边LM的长为()A.10 B.11 C.110 D.12126.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为25,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论:①x2+y2=25;②x﹣y=2;③2xy=21;④x+y=7.其中正确的结论有.八.勾股定理的应用(共3小题)27.如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EA的长是()km.A.4 B.5 C.6 D.28.如图,Rt△ABC中,∠ABC=90°,AB=8,D在BC边上,且BD=2,P为三角形内一点,满足AP⊥BP,直线DP交AC于点E,当AE最大时,AP的长是()A. B. C. D.629.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),可以计算出两图孔中心B和C的距离为()mm.A.120 B.135 C.30 D.150九.平面展开-最短路径问题(共1小题)30.如图,长方体的高为9dm,底面是边长为6dm的正方形.一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为()A.10dm B.12dm C.15dm D.20dm一十.三角形中位线定理(共1小题)31.如图,△ABC中,∠A=60°,AC>AB>6,点D,E分别在边AB,AC上,且BD=CE=6,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为.一十一.平行四边形的性质(共2小题)32.如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,,连接OE,下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④;⑤∠AEO=60°.其中成立的个数是()A.1个 B.2个 C.3个 D.4个33.如图,▱ABCD中,AB=22cm,BC=8cm,∠A=45°,动点E从A出发,以2cm/s的速度沿AB向点B运动,动点F从点C出发,以1cm/s的速度沿着CD向D运动,当点E到达点B时,两个点同时停止.则EF的长为10cm时点E的运动时间是()A.6s B.6s或10s C.8s D.8s或12s一十二.平行四边形的判定与性质(共1小题)34.如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个 B.2个 C.3个 D.4个一十三.菱形的性质(共2小题)35.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为()A.4 B.4 C.8 D.836.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A. B.3+3 C.6+ D.一十四.矩形的性质(共4小题)37.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB=4,BC=2,则点D到点O的最大距离是()A. B. C. D.38.如图,在矩形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,若AB=6,BC=10,则GH的长度为()A. B. C. D.239.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P的坐标为.40.如图,在矩形ABCD中,AB=2,AD=4,E为AD的中点,F为线段EC上一动点,P为BF中点,连接PD,则线段PD长的取值范围是.一十五.矩形的判定与性质(共1小题)41.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为()A.5 B.4 C. D.3一十六.正方形的性质(共10小题)42.青苗小组的同学在探究的结果时,发现可以进行如下操作:如图,将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了()A.方程思想 B.分类讨论思想 C.模型思想 D.数形结合思想43.如图所示,在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为()A.3 B.4 C.5 D.644.如图,在正方形ABCD中,E、F分别是AB、BC的中点,CE交DF于点G,连接AG.下列结论:①CE=DF;②CE⊥DF;③∠EAG=30°;④∠AGE=∠CDF.其中正确的是()A.①② B.①③ C.①②④ D.①②③45.如图.正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是4,则AB的长为()A.4 B.2 C. D.46.如图,正方形ABCD的边长为2,点O是对角线BD的中点,点E、F分别在AB、AD边上运动,且保持BE=AF,连接OE,OF,EF在此运动过程中,下列结论:①OE=OF;②∠EOF=90°;③四边形AEOF的面积保持不变;④当EF∥BD时,EF=,其中正确的结论是()A.①② B.②③ C.①②④ D.①②③④47.如图,正方形ABCD边长为1,点E,F分别是边BC,CD上的两个动点,且BE=CF,连接BF,DE,则BF+DE的最小值为()A. B. C. D.48.如图,在正方形ABCD中,E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.在下列结论中:①DE=EF;②△DAE≌△DCG;③AC⊥CG;④CE=CF.其中正确的是()A.②③④ B.①②③ C.①②④ D.①③④49.如图,正方形ABCD边长为12,里面有2个小正方形,各边的顶点都在大正方形的边上的对角线或边上,它们的面积分别是S1,S2,则S1+S2=()A.68 B.72 C.64 D.7050.如图,在正方形ABCD中,O为对角线AC、BD的交点,E、F分别为边BC、CD上一点,且OE⊥OF,连接EF.若,则EF的长为()A.2 B.2+ C.+1 D.351.如图,E为边长为2的正方形ABCD的对角线BD上的一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是.一十七.正方形的判定与性质(共1小题)52.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G,连接AF,DE.给出下列结论:①△AOF≌△DOE;②△OBE≌△OCF;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=EF2;⑤AF⊥DE,其中正确的为()A.①②④⑤ B.①②③④⑤ C.①②③④ D.①②③⑤一十八.翻折变换(折叠问题)(共1小题)53.如图,将▱ABCD纸片折叠(折痕为BE),使点A落在BC上,记作①;展平后再将▱ABCD折叠(折痕为CF),使点D落在BC上,记作②;展平后继续折叠▱ABCD,使AD落在直线BC上,记作③;重新展平,记作④.若AB=4,BC=7,则图④中线段GH的长度为()A. B. C.3 D.4
专题08期中选择填空必刷(压轴18考点53题)一.二次根式有意义的条件(共2小题)1.已知a、b满足,则=()A.4 B.8 C.2024 D.4048【答案】A【解答】解:∵a、b满足,∴,∴c=2025,∴|2023﹣a|+(2024﹣b)=0,∴2023﹣a=0,2024﹣b=0,∴a=2023,b=2024,则===4,故选:A.2.若|2017﹣m|+=m,则m﹣20172=2018.【答案】见试题解答内容【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:2018.二.二次根式的性质与化简(共6小题)3.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A. B. C. D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.4.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4 B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.故选:A.5.已知T1===,T2===,T3===,…Tn=,其中n为正整数.设Sn=T1+T2+T3+…+Tn,则S2021值是()A.2021 B.2022 C.2021 D.2022【答案】A【解答】解:由T1、T2、T3…的规律可得,T1==1+(1﹣),T2==1+(﹣),T3==1+(﹣),……T2021==1+(﹣),所以S2021=T1+T2+T3+…+T2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+=2021,故选:A.6.化简﹣a的结果是()A.﹣2a B.﹣2a C.0 D.2a【答案】C【解答】解:﹣a=﹣a﹣a2•=﹣a+a=0.故选:C.7.已知实数a,b在数轴上的位置如图所示,则=()A.2b﹣2a B.﹣2a C.﹣2b﹣2a D.2a【答案】D【解答】解:观察数轴可知:a<0,b>0,|b|>|a|,∴a+b>0,a﹣b<0,∴=a+b﹣(b﹣a)=a+b﹣b+a=2a,故选:D.8.实数a在数轴上的位置如图所示,化简:|a﹣2|+=1.【答案】1.【解答】解:由数轴可知:a﹣2<0,a﹣1>0,原式=|a﹣2|+=|a﹣2|+|a﹣1|=﹣(a﹣2)+(a﹣1)=﹣a+2+a﹣1=1,故答案为:1.三.二次根式的混合运算(共2小题)9.已知a为实数,且与都是整数,则a的值是或.【答案】见试题解答内容【解答】解:∵是正整数,∴a是含有﹣2的代数式;∵是整数,∴化简后为含有2的代数式,∴a=或.故答案为:或.10.利用平方与开平方互为逆运算的关系,可以将某些无理数进行如下操作:当a=+1时,移项得a﹣1=,两边平方得,所以a2﹣2a+1=3,即得到整系数方程:a2﹣2a﹣2=0.仿照上述操作方法,完成下面的问题:当a=时,(1)得到的整系数方程为a2+a﹣1=0;(2)计算:a3﹣2a+2024=2023.【答案】(1)a2+a﹣1=0;(2)2023.【解答】解:(1)∵a=,∴2a+1=,∴(2a+1)2=5,即4a2+4a+1=5,∴a2+a﹣1=0;故答案为:a2+a﹣1=0;(2)∵a2+a﹣1=0,∴a2=﹣a+1,∴a3=a(﹣a+1)=﹣a2+a=﹣(﹣a+1)+a=2a﹣1,∴a3﹣2a+2024=2a﹣1﹣2a+2024=2023.故答案为:2023.四.二次根式的化简求值(共1小题)11.因为,所以,的整数部分为2,小数部分为;设的小数部分为x,的整数部分为y,则=6.【答案】6.【解答】解:∵,∴得小数部分为,∴的小数部分为,即∵,∴的整数部分为3,即:y=3,∴,故答案为:6.五.二次根式的应用(共1小题)12.已知三角形的三边长分别为a、b、c,求其面积.对此问题,中外数学家曾经进行过深入研究.古希腊几何学家海伦(Heron,约公元50年),给出了求其面积的海伦公式:S=,其中p=.①我国南宋时期数学家秦九韶(约1202~1261),给出了著名的秦九韶公式:S=.②若一个三角形的三边长依次为,,,请选用适当的公式求出这个三角形的面积为()A. B. C. D.【答案】B【解答】解:S==,故选:B.六.勾股定理(共8小题)13.如图,网格中的每个小正方形的边长为1,△ABC的顶点A、B、C均在网格的格点上,BD⊥AC于点D,则BD的长为()A. B. C. D.【答案】C【解答】解:如图所示:S△ABC=×BC×AE=×BD×AC,∵AE=2,AC=,BC=2,即×2×2=××BD,解得:BD=.故选:C.14.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.16 B.18 C.20 D.22【答案】B【解答】解:连接PF,过点F作FD⊥AM于点D,∵AB=EB,∠ACB=∠ENB=90°,而∠CBA+∠CBE=∠EBN+∠CBE=90°,∴∠CBA=∠EBN,∴△CBA≌△NBE(AAS),故S4=S△ABC;又∵FA=AB,∠FDA=∠ACB=90°,而∠FAD+∠CAB=∠CAB+∠ABC=90°,∴∠FAD=∠ABC,∴△FAD≌△ABC(AAS),同理可证△ACT≌△FDK,∴S2=S△FDA=S△ABC,同理可证△TPF≌△KME,△AQF≌△ABC,∴S1+S3=S△ADF=S△ABC,综上所证:S1+S2+S3+S4=3S△ABC=3×=18.故选:B.15.如图,已知Rt△ABC中,∠ACB=90°.AC=3,BC=4.以AB、BC、AC为直径作半圆围成两月形,则阴影部分的面积为()A.5 B.6 C.7 D.8【答案】B【解答】解:∵∠ACB=90°,∴AB2=AC2+CB2,S阴影=直径为AC的半圆的面积+直径为BC的半圆的面积+S△ABC﹣直径为AB的半圆的面积,=π×+π×+AC×CB﹣π×()2=π(AC2+BC2﹣AB2)+AC×BC=×3×4=6.故选:B.16.如图,在△ABC中,∠ABC=90°,BC=4,AB=8,P为AC边上的一个动点,D为PB上的一个动点,连接AD,当∠CBP=∠BAD时,线段CD的最小值是()A. B.2 C. D.【答案】D【解答】解:∵∠ABC=90°,∴∠ABP+∠CBP=90°,∵∠CBP=∠BAD,∴∠ABD+∠BAD=90°,∴∠ADB=90°,取AB的中点E,连接DE,CE,∴DE=AB=4,∴EC=EB=4,∵CD≥CE﹣DE,∴CD的最小值为4﹣4,故选:D.17.图1叫做一个基本的“勾股树”,也叫做第一代勾股树.让图1中两个小正方形各自长出一个新的勾股树(如图2),叫做第二代勾股树.从第二代勾股树出发,又可以长出第三代勾股树(如图3).这样一生二、二生四、四生八,继续生长下去,则第四代勾股树图形中正方形的个数为31.【答案】31.【解答】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),∴第四代勾股树图形中正方形的个数有1+2+22+23+24=31(个).故答案为:31.18.如图,在△ABC中,∠ACB=90°,AC=9,BC=5,点P为△ABC内一动点.过点P作PD⊥AC于点D,交AB于点E.若△BCP为等腰三角形,且S△PBC=,则PD的长为1或.【答案】1或.【解答】解:∵S,∴CD=3,∴AD=AC﹣CD=6,∵∠ACB=90°,PD⊥AC,∴DE∥BC,∴△ADE∽△ACB,∴,∴,∴DE=,过点P作PF⊥BC于点F,①当PB=BC时,如图,∴PF=CD=3,PB=BC=5,在Rt△PBF中,BF==4,∴DP=CF=BC﹣BF=1,∵DP<DE,∴点P在线段DE上,符合题意;②当PC=PB时,如图,∴DP=CF=,∵DP<DE,∴点P在线段DE上,符合题意;③当PC=BC时,如图,∴PF=CD=3,PC=BC=5,在Rt△CDP中,DP==4,∵DP>DE,∴点P不在线段DE上,舍去,综上,PD的长为1或,故答案为:1或.19.如图,在△ABC中,∠ACB=90°,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+BC=7,空白部分面积为16,则图中阴影部分的面积是.【答案】.【解答】解:如图,∵四边形ABGF是正方形,∴∠FAB=∠AFG=∠ACB=90°,∴∠FAC+∠BAC=∠FAC+∠ABC=90°,∴∠FAC=∠ABC,∴△FAH≌△ABN(ASA),∴S△FAH=S△ABN,∴S△ABC=S四边形FNCH,在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=7,∴(AC+BC)2=AC2+BC2+2AC•BC=49,∴AB2+2AC•BC=49,∵AB2﹣S△ABC=16,∴AB2﹣AC•BC=16,∴BC•AC=,AB2=,∴AC2+BC2=,∴阴影部分的面积和=AC2+BC2+2S△ABC﹣S白=+2××﹣16=.故答案为:.20.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=2.5.【答案】2.5.【解答】解:∵△ABD、△ACE、△BCF均是等腰直角三角形,∴AB=BD,AC=CE,BC=CF,设AB=BD=a,AC=CE=b,BC=CF=c,S△ABG=m,S△ACH=n,∵a2+b2=c2,∴S△ABD+S△ACE=S△BCF,∴S1+m+n+S4=S2+S3+m+n,∴S4=3.5+5.5﹣6.5=2.5故答案为:2.5.七.勾股定理的证明(共6小题)21.如图,四个全等的直角三角形拼成“赵爽弦图”,其中四边形ABCD与四边形EFGH都是正方形.连结DG并延长,交BC于点P,点P为BC的中点.若EF=2,则AE的长为()A.4 B. C. D.【答案】C【解答】解:由题意,EF=HG=FG=2,AD∥BC,BG⊥HC,DH⊥HG,∠ADE=∠GBP,∴∠ADG=∠GPC.∵点P为BC的中点,∴PB=PG=PC.∴∠BGP=∠GBP,∠GPC=2∠GBP.∴∠GPC﹣∠ADE=2∠GBP﹣∠ADE,即∠GDH=∠GBP.∴△GDH∽△CBG.∴=,即=.设AE=BF=HD=x,∴=.∴x=1+或x=1﹣(舍去).故选:C.22.如图,在四边形ABDE中,AB∥DE,AB⊥BD,点C是边BD上一点,BC=DE=a,CD=AB=b,AC=CE=c.下列结论:①△ABC≌△CDE;②∠ACE=90°;③ab;④该图可以验证勾股定理.其中正确的结论个数是()A.4 B.3 C.2 D.1【答案】A【解答】解:在△ABC和△CDE中,,∴△ABC≌△CDE(SSS),故①正确;∵△ABC≌△CDE,∴∠BAC=∠DCE,∵AB⊥BD,∴∠B=90°,∴∠BAC+∠ACB=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°,故②正确;∵AB∥DE,AB⊥BD,∠ACE=90°,∴S四边形ABDE=(a+b)(a+b)=(a+b)2,S△ACE=c2,S△ABC=S△CDE=ab,∴ab,故③正确;∵ab,整理,得a2+b2=c2,故④正确.正确的结论①②③④.故选:A.23.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是()A.S1=a2+b2+2ab B.S1=a2+b2+ab C.S2=c2 D.S2=c2+ab【答案】B【解答】解:观察图象可知:S1=S2=a2+b2+ab=c2+ab,故选:B.24.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76 B.57 C.38 D.19【答案】A【解答】解:设AC=AD=x,则BD=30﹣5﹣2x=25﹣2x,∵BD2=BC2+CD2,∴52+(2x)2=(25﹣2x)2,∴x=6,∴BD=25﹣2x=13,AD=6,∴这个风车的外围周长是:(13+6)×4=76.故选:A.25.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形的边LM的长为()A.10 B.11 C.110 D.121【答案】B【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.∵∠CBF=90°,∴∠ABC+∠OBF=90°,又∵直角△ABC中,∠ABC+∠ACB=90°,∴∠OBF=∠ACB,在△OBF和△ACB中,,∴△OBF≌△ACB(AAS),∴AC=OB,同理:△ACB≌△PGC,∴PC=AB,∴OA=AP,∴矩形AOLP是正方形,边长AO=AB+AC=3+4=7,∴LM=4+7=11,故选:B.26.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为25,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论:①x2+y2=25;②x﹣y=2;③2xy=21;④x+y=7.其中正确的结论有①②③.【答案】①②③.【解答】解:给图形注上字母如下:①∵△ABC为直角三角形,∴根据勾股定理:x2+y2=AB2=25,故选项①正确;②由图可知,x﹣y=CE==2,故选项②正确;③由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,列出等式为4××xy+4=25,即2xy=21;故选项③正确;④由2xy=21①,又∵x2+y2=25②,∴①+②得,x2+2xy+y2=25+21,整理得,(x+y)2=46,x+y=≠7,故选项④错误.∴正确结论有①②③.故答案为:①②③.八.勾股定理的应用(共3小题)27.如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EA的长是()km.A.4 B.5 C.6 D.【答案】C【解答】解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.所以,EA=10﹣4=6(km).故选:C.28.如图,Rt△ABC中,∠ABC=90°,AB=8,D在BC边上,且BD=2,P为三角形内一点,满足AP⊥BP,直线DP交AC于点E,当AE最大时,AP的长是()A. B. C. D.6【答案】C【解答】解:∵P为三角形内一点,满足AP⊥BP,∴P为动点,∠APB始终为直角,∴点P在以AB为直径的圆上,取AB的中点O,连接OP和OD,当AE最大时,线段DP与⊙O相切,∵∠ABC=90°,OP=OD,∴BD=PD,∠BDP=∠BOP=180°,∵∠AOP+∠BOP=180°,∴∠BDP=∠AOP,∵BD=2,AB=8,∴BD=PD=2,OA=OP=4,∴△DBP~△OAP,∴PD:OP=BP:AP=2:4,∴AP=2BP,在Rt△ABP中,BP2+AP2=AB2,∴BP2+(2BP)2=AB2,解得:BP=,∴AP=2BP=.故选:C.29.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),可以计算出两图孔中心B和C的距离为()mm.A.120 B.135 C.30 D.150【答案】D【解答】解:如图,在Rt△ABC中,AC=180﹣60=120(mm),AB=150﹣60=90(mm),∴BC==150(mm),∴两圆孔中心B和C的距离为150mm.故选:D.九.平面展开-最短路径问题(共1小题)30.如图,长方体的高为9dm,底面是边长为6dm的正方形.一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为()A.10dm B.12dm C.15dm D.20dm【答案】C【解答】解:①如图,将长方体的正面和上面展开在同一平面内,AD=6,BD=6+9=15,AB==(dm);②如图,将长方体的正面和右面展开在同一平面内,AC=6+6=12,BC=9,AB==15(dm),③将长方体的正面和左面展开在同一平面内,同理可得AB==15(dm),由于15<3,所以蚂蚁爬行的最短路程为15dm.故选:C.一十.三角形中位线定理(共1小题)31.如图,△ABC中,∠A=60°,AC>AB>6,点D,E分别在边AB,AC上,且BD=CE=6,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为3.【答案】3.【解答】解:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,作CJ⊥EH于J.∵BD∥CH,∴∠B=∠NCH,∵BN=CN,∠DNB=∠KNC,∵△DNB≌△HNC(ASA),∴BD=CH,DN=NH,∵BD=EC=6,∴EC=CH=6,∵∠A+∠ACH=180°,∠A=60°,∴∠ECH=120°,∵CJ⊥EH,∴EJ=JH=EC•cos30°=3,∴EH=2EJ=6,∵DM=ME,DN=NH,∴MN=EH=3.故答案为:3.一十一.平行四边形的性质(共2小题)32.如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,,连接OE,下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④;⑤∠AEO=60°.其中成立的个数是()A.1个 B.2个 C.3个 D.4个【答案】D【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BEA=∠BAE,∴AB=EB,∵∠ABE=∠ADC=60°,∴△ABE是等边三角形,∴AB=BE=AE,∵AB=BC,∴BE=BC,∴BE=CE=AE,∴∠EAC=∠ECA,∴∠AEB=∠EAC+∠ECA=2∠ECA=60°,∴∠ECA=30°,∴∠CAD=∠ECA=30°,故①正确;∵∠EAC=∠ECA=30°,∠BAE=60°,∴∠BAC=∠EAC+∠BAE=30°+60°=90°,∴AC⊥AB,∴S▱ABCD=AB•AC,故②正确;AB⊥OA,∴OB>AB,∴OB≠AB,故③错误;∵∠CAD=30°,∠AEB=60°,AD//BC,∴∠EAC=∠ACE=30°,∴AE=CE,∴BE=CE,∵OA=OC,∴OE=AB=BC,故④正确;∵△ABE是等边三角形,∴∠AEB=60°,∴∠AEC=120°,∵CE=AE,OA=OC,∴∠AEO=∠CEO=∠AEC=60°,故⑤正确.故选:D.33.如图,▱ABCD中,AB=22cm,BC=8cm,∠A=45°,动点E从A出发,以2cm/s的速度沿AB向点B运动,动点F从点C出发,以1cm/s的速度沿着CD向D运动,当点E到达点B时,两个点同时停止.则EF的长为10cm时点E的运动时间是()A.6s B.6s或10s C.8s D.8s或12s【答案】C【解答】解:在▱ABCD中,CD=AB=22cm,AD=BC=8cm,如图,过点D作DG⊥AB于点G,∵∠A=45°,∴△ADG是等腰直角三角形,∴AG=DG=AD=8,过点F作FH⊥AB于点H,得矩形DGHF,∴DG=FH=8cm,DF=GH,∵EF=10cm,∴EH==6cm,由题意可知:AE=2tcm,CF=tcm,∴GE=AE=AG=(2t﹣8)cm,DF=CD﹣CF=(22﹣t)cm,∴GH=GE+EH=(2t﹣8)+6=(2t﹣2)cm,∴2t﹣2=22﹣t,解得t=8,当F点在E点左侧时,由题意可知:AE=2tcm,CF=tcm,∴GE=AE﹣AG=(2t﹣8)cm,DF=CD﹣CF=(22﹣t)cm,∴GH=GE﹣EH=(2t﹣8)﹣6=(2t﹣14)cm,∴2t﹣14=22﹣t,解得t=12,∵点E到达点B时,两点同时停止运动,∴2t≤22,解得t≤11.∴t=12不符合题意,舍去,∴EF的长为10cm时点E的运动时间是8s,故选:C.一十二.平行四边形的判定与性质(共1小题)34.如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个 B.2个 C.3个 D.4个【答案】C【解答】解:连接EC,作CH⊥EF于H.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC=1,∠ACE=∠ABD=60°,∵EF∥BC,∴∠EFC=∠ACB=60°,∴△EFC是等边三角形,CH=,∴EF=EC=BD,∵EF∥BD,∴四边形BDEF是平行四边形,故②正确,∵BD=CF=1,BA=BC,∠ABD=∠BCF,∴△ABD≌△BCF,故①正确,∵S平行四边形BDEF=BD•CH=,故③正确,∵CD=2BD,AF=2CF.∴S△AEF=S△AEC=•S△ABD=,故④错误,故选:C.一十三.菱形的性质(共2小题)35.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为()A.4 B.4 C.8 D.8【答案】C【解答】解:∵DH⊥AB,∴∠BHD=90°,∵四边形ABCD是菱形,∴OB=OD,OC=OA=,AC⊥BD,∴OH=OB=OD=(直角三角形斜边上中线等于斜边的一半),∴OD=4,BD=8,由得,=32,∴AC=8,∴OC==4,∴CD==8,故选C.36.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A. B.3+3 C.6+ D.【答案】D【解答】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB=DC=BC,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE===3,∴2DE=6.∴MA+MB+MD的最小值是6.故选:D.一十四.矩形的性质(共4小题)37.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB=4,BC=2,则点D到点O的最大距离是()A. B. C. D.【答案】A【解答】解:如图,取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=2,∵点E是AB的中点,∴AE=AB=2,在Rt△DAE中,DE===2,在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.故选:A.38.如图,在矩形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,若AB=6,BC=10,则GH的长度为()A. B. C. D.2【答案】C【解答】解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∵E,F分别是边AB,BC的中点,AB=6,BC=10,∴AE=AB=×6=3,CF=BC=10=5,∵AD∥BC,∴∠DHP=∠FHC,在△PDH与△CFH中,,∴△PDH≌△CFH(AAS),∴PD=CF=5,CH=PH,∴AP=AD﹣PD=5,∴PE===,∵点G是EC的中点,∴GH=EP=,故选:C.39.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P的坐标为(9,12)或(6,12)或(24,12).【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).40.如图,在矩形ABCD中,AB=2,AD=4,E为AD的中点,F为线段EC上一动点,P为BF中点,连接PD,则线段PD长的取值范围是2≤PD≤.【答案】2≤PD≤.【解答】解:如图:当点F与点C重合时,点P在点P1处,CP1=BP1,当点F与点E重合时,点P在点P2处,EP2=BP2,∴P1P2∥EC且P1P2=CE,当点F在EC上除点C、E的位置处时,有BP=FP,由中位线定理可知:P1P∥CF且P1P=CF,∴点P的运动轨迹是线段P1P2,∵矩形ABCD中,AB=2,AD=4,E为AD的中点,∴△ABE,△BEC、△DCP1为等腰直角三角形,∴∠ECB=45°,∠DP1C=45°,∵P1P2∥EC,∴∠P2P1B=∠ECB=45°,∴∠P2P1D=90°,∴DP的长DP1最小,DP2最大,∵CD=CP1=DE=2,∴DP1=2,CE=2,∴P1P2=,∴DP2==,故答案为:2≤PD≤.一十五.矩形的判定与性质(共1小题)41.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为()A.5 B.4 C. D.3【答案】C【解答】解:连接AP,∵AB=6,AC=8,BC=10,∴AB2+AC2=62+82=100,BC2=102=100,∴AB2+AC2=BC2,∴△ABC是直角三角形,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠PEA=∠PFA=90°,∴四边形AEPF是矩形,∴AP=EF,∴当AP⊥BC时,AP有最小值,即EF有最小值,∵△ABC的面积=BC•AP=AB•AC,∴BC•AP=AB•AC,∴10AP=6×8,∴AP=,∴AP=EF=,∴EF的最小值为,故选:C.一十六.正方形的性质(共10小题)42.青苗小组的同学在探究的结果时,发现可以进行如下操作:如图,将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了()A.方程思想 B.分类讨论思想 C.模型思想 D.数形结合思想【答案】D【解答】解:将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了数形结合思想,故选:D.43.如图所示,在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为()A.3 B.4 C.5 D.6【答案】C【解答】解:∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,AC⊥BD,又∵OE⊥OF,∴∠EOB+∠BOF=90°=∠BOF+∠COF,∴∠EOB=∠COF,∴△BEO≌△CFO(ASA),∴BE=CF=3,又∵AB=BC,∴AE=BF=4,∴Rt△BEF中,EF===5.故选:C.44.如图,在正方形ABCD中,E、F分别是AB、BC的中点,CE交DF于点G,连接AG.下列结论:①CE=DF;②CE⊥DF;③∠EAG=30°;④∠AGE=∠CDF.其中正确的是()A.①② B.①③ C.①②④ D.①②③【答案】C【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵E,F分别是AB,BC的中点,∴BE=AB,CF=BC,∴BE=CF,在△CBE与△DCF中,,∴△CBE≌△DCF(SAS),∴∠ECB=∠CDF,CE=DF,故①正确;∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故②正确;∵CF=BC=CD,∴∠CDF≠30°,∴∠ADG≠60°,∵AD=AG,∴△ADG不是等边三角形,∴∠EAG≠30°,故③错误;∵CE⊥DF,∴∠EGD=90°,延长CE交DA的延长线于H,如图,∵点E是AB的中点,∴AE=BE,∵∠AHE=∠BCE,∠AEH=∠CEB,AE=BE,∴△AEH≌△BEC(AAS),∴BC=AH=AD,∵AG是斜边的中线,∴AG=DH=AD,∴∠ADG=∠AGD,∵∠AGE+∠AGD=90°,∠CDF+∠ADG=90°,∴∠AGE=∠CDF.故④正确;故选:C.45.如图.正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是4,则AB的长为()A.4 B.2 C. D.【答案】A【解答】解:过点O作OE⊥AD于点E,OF⊥CD于点F,则:∠OEM=∠OFN=∠OFD=90°,∵正方形ABCD,∴OA=OD=OC,∠ADC=90°,∴,四边形OEDF为矩形,∴四边形OEDF为正方形,∴OE=OF,∠EOF=90°,∵ON⊥OM,∴∠MON=90°=∠EOF,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴正方形OFDE的面积等于四边形MOND的面积,∴DE2=4,∴DE=2(负值已舍掉);∴AB=AD=2DE=4;故选:A.46.如图,正方形ABCD的边长为2,点O是对角线BD的中点,点E、F分别在AB、AD边上运动,且保持BE=AF,连接OE,OF,EF在此运动过程中,下列结论:①OE=OF;②∠EOF=90°;③四边形AEOF的面积保持不变;④当EF∥BD时,EF=,其中正确的结论是()A.①② B.②③ C.①②④ D.①②③④【答案】D【解答】解:过O作OG⊥AB于G,OH⊥AD于H,∵四边形ABCD是正方形,∴∠A=∠OHA=∠OGA=90°,OH∥AB,OG∥AD,∵点O是对角线BD的中点,∴AH=DH,AG=BG,∴OH=AB,OG=AD,∵AD=BA,∴OG=OH,BG=AH,∴四边形AGOH是正方形,∴∠GOH=90°,∵BE=AF,∴GE=FH,在△OFH与△OEG中,,∴△OFH≌△OEG(SAS),∴OE=OF,故①正确;∠EOG=∠FOH,∴∠EOG+∠GOF=∠GOF+∠FOH=90°,∴∠EOF=90°,故②正确;∵△OFH≌△OEG,∴四边形AEOF的面积=正方形AOGH的面积=1×1=2,∴四边形AEOF的面积保持不变;故③正确;∵EF∥BD,∴∠AFE=∠ADB=45°,∠AEF=∠ABD=45°,∴AE=AF,∵BE=AF,∴AE=BE,∴AE=AF=AB=1,∴EF=,故④正确;故选:D.47.如图,正方形ABCD边长为1,点E,F分别是边BC,CD上的两个动点,且BE=CF,连接BF,DE,则BF+DE的最小值为()A. B. C. D.【答案】C【解答】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,AD=1,AH=2,∴DH==,∴BF+DE最小值为.故选:C.48.如图,在正方形ABCD中,E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.在下列结论中:①DE=EF;②△DAE≌△DCG;③AC⊥CG;④CE=CF.其中正确的是()A.②③④ B.①②③ C.①②④ D.①③④【答案】B【解答】解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年超市促销方案5篇范文模板
- 石河子大学《食品物性学》2022-2023学年第一学期期末试卷
- 石河子大学《结构力学二》2023-2024学年第一学期期末试卷
- 石河子大学《简明新疆地方史教程》2022-2023学年第一学期期末试卷
- 石河子大学《风景画表现》2021-2022学年第一学期期末试卷
- 沈阳理工大学《自动武器原理与构造》2023-2024学年第一学期期末试卷
- 沈阳理工大学《交互设计》2023-2024学年第一学期期末试卷
- 2018年四川内江中考满分作文《我心中的英雄》12
- 沈阳理工大学《电力电子技术》2023-2024学年期末试卷
- 广州 存量房交易合同 范例
- 信息安全保密控制措施资料
- 《现代汉语修辞》PPT课件(完整版)
- 行政伦理学-试题及答案
- TTJCA 0007-2022 住宅室内装饰装修工程施工验收规范
- 乡村振兴战略项目经费绩效评价指标体系及分值表
- 构造柱工程施工技术交底
- 读《学校与社会明日之学校》有感
- 医院科室质量与安全管理小组工作记录本目录
- 300字方格纸模板
- 草诀百韵歌原文及解释
- 钢网架防火涂料施工方案
评论
0/150
提交评论