版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题06几何最值四大模型模型一:轴对称最值模型模型二:直角之最值模型模型三:费马点最值模型模型四:面积法求定值模型一:将军饮马问题1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.模型二:费马点【费马点问题】问题:如图1,如何找点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?图文解析:如图1,把△APC绕C点顺时针旋转60°得到△A′P′C,连接PP′.则△CPP′为等边三角形,CP=PP′,PA=P′A′,∴PA+PB+PC=P′A′+PB+PP′BC′.∵点A′可看成是线段CA绕C点顺时针旋转60°而得的定点,BA′为定长∴当B、P、P′、A′四点在同一直线上时,PA+PB+PC最小.最小值为BA.′【如图1和图2,利用旋转、等边等条件转化相等线段.】∴∠APC=∠A′P′C=180°-∠CP′P=180°-60°=120°,∠BPC=180°-∠P′PC=180°-60°=120°,∠APC=360°-∠BPC-∠APC=360°-120°-120°=120°.因此,当△ABC的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费马点问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.【方法总结】利用旋转、等边等条件转化相等线段,将三条线段转化成首尾相连的三条线段.【知识应用】两点之间线段最短.模型一:轴对称最值模型1.(春•庐江县期末)如图,在菱形ABCD中,AC与BD相交于点O,AB=4,BD=4,E为AB的中点,点P为线段AC上的动点,则EP+BP的最小值为()A.4 B.2 C.2 D.82.(2022•埇桥区校级月考)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为()A.2 B.2 C.4 D.43.(2022春•裕华区校级期末)如图,在菱形ABCD中,∠D=135°,AD=3,CE=2,点P是线段AC上一动点,点F是线段AB上一动点,则PE+PF的最小值()A.2 B.3 C.2 D.4.(2023•西乡塘区校级模拟)如图,在边长为的4的正方形ABCD中,点E、F分别是边BC、CD上的动点,且BE=CF,连接BF、DE,则BF+DE的最小值为()A. B. C. D.5.(2023•烟台一模)如图,在矩形ABCD中,AB=12,AD=10,点E在AD上,点F在BC上,且AE=CF,连结CE,DF,则CE+DF的最小值为()A.26 B.25 C.24 D.22模型二:直角之最值模型6.(2023春•河东区期中)如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为()A.5 B.3.6 C.2.4 D.4.87.(2022秋•泰山区校级期末)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=2,则GH的最小值为()A. B. C. D.8.(2023秋•石景山区期末)如图,E是正方形ABCD内一点,满足∠AEB=90°,连接CE.若AB=2,则CE长的最小值为.9.(2023秋•洪洞县期中)如图,在△ABC中,AB=BC=10,AC=12,点D,E分别是AB,BC边上的动点,连结DE,F,M分别是AD,DE的中点,则FM的最小值为()A.12 B.10 C.9.6 D.4.810.(2023秋•头屯河区期末)正方形ABCD的边长为4,点E、F分别是BC,CD上的一动点,且BE=CF,连结AE,BF,两线交于点P,连接CP,则CP的最小值是()A. B. C. D.11.(2023秋•海珠区期末)如图,在矩形ABCD中,AB=6,BC=8,点E是AD边上的动点,点M是点A关于直线BE的对称点,连接MD,则MD的最小值是()A.6 B.5 C.4 D.312.(2023秋•建湖县期中)如图,△ABC中∠C=90°,AC=8,BC=6,线段DE的两个端点D、E分别在边AC、BC上滑动,且DE=6,若点M、N分别是AB、DE的中点,则MN的最小值为()A.2 B.3 C.3.5 D.4模型三:费马点最值模型13.(2023秋•白银区期末)如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A. B.3+3 C.6+ D.14.(2023秋•太和县期末)如图,P是边长为1的正方形ABCD内的一个动点,且满足∠PBC+∠PDC=45°,则CP的最小值是()A. B. C. D.模型四:面积法求定值15.(2023秋•东河区期末)如图,矩形ABCD的对角线AC,BD交于点O,AB=3,BC=4,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A. B. C. D.16.(2023春•东昌府区期中)如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A. B. C. D.1.(2023•深圳模拟)如图,点E是正方形ABCD内部一个动点,且AD=EB=8,BF=2,则DE+CF的最小值为()A.10 B. C. D.2.(2023春•邗江区校级期末)如图,在正方形ABCD中,点E、F、G分别在AB、AD、CD上,AB=3,AE=1,DG>AE,BF=EG,BF与EG交于点P.连接DP,则DP的最小值为()A. B. C. D.3.(2023春•南谯区期末)如图,在矩形ABCD中,边AB,AD的长分别为4和3,点E在CD上,点F在AB的延长线上,且EC=BF,连接FC,当点E在边CD上移动时,AE+FC的最小值为()A.7 B. C.10 D.4.(2023•德阳)如图,▱ABCD的面积为12,AC=BD=6,AC与BD交于点O,分别过点C,D作BD,AC的平行线相交于点F,点G是CD的中点,点P是四边形OCFD边上的动点,则PG的最小值是()A.1 B. C. D.35.(2023春•常州期末)如图,在菱形ABCD中,∠B=60°,AB=6,点E、F分别在边AB、AD上,且BE=AF,则EF的最小值是()A.2 B.3 C. D.6.(2023春•遵化市期末)如图所示,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A,B两点的距离之和PA+PB的最小值为()A.5 B. C. D.7.(2023春•长丰县期末)如图,在边长为8的正方形ABCD中,E是对角线BD上一点,且BE=BC,点P是CE上一动点,则点P到边BD,BC的距离之和PM+PN的值()A.是定值 B.是定值8 C.有最小值 D.有最大值88.(2023春•庐江县期末)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值为()A.11 B.12 C.13 D.149.(2023•福田区校级三模)如图,点M是矩形ABCD内一个动点,AB=AM=6,BC=4,点N为线段AM上一点,且AN=AM,连接BN和CM,则BN+CM的最小值为()A. B.5 C. D.10.(2023•河东区一模)如图,在边长为2的正方形ABCD中,E、F分别为DC、BC上的点,且DE=CF,连接DF,BE,求DF+BE的最小值为()A.2 B.2 C.4 D.2+211.(2023春•梁园区期末)如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C. D.212.(2023春•江阴市期末)如图,E为正方形ABCD中BC边上的一点,且AB=12,BE=4,M、N分别为边CD、AB上的动点,且始终保持MN⊥AE,则AM+NE的最小值为()A.8 B.8 C.8 D.1213.(2023秋•莱西市期末)如图,在菱形ABCD中,AC=8,BD=6.E是CD边上一动点,过点E分别作EF⊥OC于点F,EG⊥OD于点G,连接FG,则FG的最小值为()A.2.4 B.3 C.4.8 D.414.(2022春•海口期末)如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024酒水购销合同模板
- 2024三方运输合同的范本
- 2024购销水泥合同范文
- 标准房屋转让协议样本
- 2024房屋拆迁合同范本
- 2024机械设备购销合同范本
- 建筑材料销售合同模板:建筑材料买卖合同参考
- 2024居室装饰装修施工合同范本
- 2024年民事调解协议书参考范本
- 标准服务合同范例大全
- 工厂改造施工方案
- 初中英语新课程标准词汇表
- 《春节的文化与习俗》课件
- 手机棋牌平台网络游戏商业计划书
- 学校体育与社区体育融合发展的研究
- 医疗机构高警示药品风险管理规范(2023版)
- 一年级体质健康数据
- 八年级物理(上)期中考试分析与教学反思
- 国家开放大学《财政与金融(农)》形考任务1-4参考答案
- 2023银行网点年度工作总结
- 工厂反骚扰虐待强迫歧视政策
评论
0/150
提交评论