巧设“陷阱”提升思维品质 论文_第1页
巧设“陷阱”提升思维品质 论文_第2页
巧设“陷阱”提升思维品质 论文_第3页
巧设“陷阱”提升思维品质 论文_第4页
巧设“陷阱”提升思维品质 论文_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

巧设“陷阱”,提升思维品质摘要:小学生的思维正处于初步发展时期,其思维的片断性、具体性很容易使其产生思维定势,在学习数学时会走入一些“陷阱”。面对这种现象,数学老师应认真梳理“陷阱”类型,采取不同的教学方法,对学生进行启发,设置知识的陷阱,让学生掉入陷阱,思维受阻,不能自拔,产生认知冲突,再诱导他们跳出陷阱。这样对于增强学生对陷阱的防御能力,调动学生探索新知的积极性,发展学生的思维品质有着重要的意义和较好的效果。当学生经历了“掉入”与“走出”陷阱的过程,他们对知识的记忆会特别深刻。关键词:陷阱思维定势思维品质在数学教学实践中,相信很多老师都有过这样的反思和困惑,为什么学生们的数学错题总是会一犯再犯?一些在现场解题或者是作业中出现的错误,经过纠正之后还仍旧会出现在考试中。笔者认为,一方面是学生们对自己的记忆力充满着“盲目”自信,感觉自己找到错误了,改正了就肯定记住了,结果在原来经过的“陷阱”中又一次犯错。在数学学习过程中,学生很容易会被各种“陷阱”迷惑,导致对数学认知出现偏差和错误。但从辩证的角度来看,“陷阱”的出现也让学生思维弱点和认知缺陷暴露无遗,如果一旦学生能够走出“陷阱”、冲破“障碍”,找到自己错误思维的根源,就会使得数学认知得以发展和深化,获得思维与能力上的“新生”。因此,教学中可以在学生掌握某种推理、某个概念、某种运算的薄弱环节处或是在学生的习惯思维、思维弱点处巧设“陷阱”。以变促思,引导学生尽快走出“陷阱”,本文结合教学实践,对此进行了详细阐述。一、在概念本质上巧设“陷阱”,培养学生思维的深刻性数学概念是构成数学知识和思维活动的基础。小学生在学习概念时常会形成一种不准确的概念,对此,教师可以在概念的易混淆处或疏忽处设陷,这样不仅可以促使学生形成完整清晰的概念,而且还加深其对概念本质的理解。1、“惯性刹车”法在教学“三角形三条边的关系”时,为了有效落实“三角形的任何两边之和都大于第三边”这个知识点,故设如下陷阱:“已知一个等腰三角形的一边为5cm,另一边为6cm,求这个三角形的周长是多少?”学生给出正确答案:若腰长为5cm,则周长为16cm;若腰长为6cm,则周长为17cm。老师把5cm、6cm分别改成3cm、5cm,追问周长又是多少。学生不假思索地回答:若腰长为3cm,则周长为11cm;若腰长为5cm,则周长为13cm。老师继续把两个已知数分别改为4cm和9cm,追问结果如何。学生轻而易举地答出“17cm或22cm”。这时老师马上“刹车”,要求学生画出这两个三角形,结果他们画不出来,因为周长是17cm的那个三角形根本不存在。学生顿时恍然大悟,反思后发现题目中有个隐含条件:“三角形的任何两边之和都大于第三边。”这样的“陷阱”教学可以有效培养学生思维的深刻性。2、“引蛇出洞”法在教学“负数的认识”时,会碰到学生经常把正数与负数表示“相反意义的量”当成“不同意义的量”。为此,在学生思维薄弱处设下“蛇洞”,并让其在“洞穴”里徘徊,再“引蛇出洞”,从而加深对负数的认识。问题1:零上12℃记作+12℃,那么零下5℃记作__℃。答:-5℃。问题2:若-3表示顺时针方向转了3圈,那么逆时针转7圈应记为__圈。答:+7。问题3:若冬冬向西走100m记作+100m,那么-50m表示。答:冬冬向东走了50m。陷阱:若小明爸爸上个月做生意盈利5000元记作+5000元,那么小明爸爸本月出借1000元记为__元。生1:-1000元。(由于前3题都是用正负数表示具有相反意义的两个量,学生的思维受到了一定牵连。)生2:错了!不能记为-1000元。师:你能说说为什么吗?生2:因为盈利和出借不是两个相反的量。师:那谁能改一改,使它能用“+”“-”来表示?生3:把“出借1000元”改为“亏损1000元”。在教学概念的本质特征时可以先引诱学生误入“陷阱”,再引起他们的认知冲突,从而达到对概念的透彻理解。有过“上当受骗”的经历后,学生“吃一堑长一智”,对知识的记忆会更加牢固,思维也更加深刻。二、在逻辑问题上巧设“陷阱”,培养学生思维的逻辑性逻辑思维能力是以记忆能力、理解能力、表达能力及空间想象能力相互渗透、相互支撑而形成的一种综合数学能力,是学生发展的基本素质之一。而小学生对具体、形象、鲜明的内容比较感兴趣,但对抽象的内容缺少逻辑思考。因此,教师应在计算技巧、联系理解等逻辑处巧设“陷阱”,培养学生思维的逻辑性。1、“咬文嚼字”法在教学多边形面积时,为了让学生深入理解三角形面积与平行四边形面积之间的关系,笔者巧设逆向思维“陷阱”,使其在条件中“咬文”,培养其思维的逻辑性。判断:一个三角形的面积是一个平行四边形面积的一半,那么这个三角形和平行四边形一定等底等高。陷阱:学生已有“如果三角形和平行四边形等底等高,那么三角形的面积是平行四边形面积的一半”这样的结论,但理解不深,逆向逻辑思维能力不强。此时,可引导学生反过来思考:(1)三角形可以等积变形吗?两个三角形它们的底和高均不相等,它们的面积可以相等吗?举例:有一个三角形,底=2,高=8,S1=2×8÷2=8;另一个三角形,底=4,高=4,S2=4×4÷2=8;S1=S2,这就说明两个三角形的底、高均不相等,但面积可以相等。(2)当三角形的面积等于平行四边形面积的一半时,是否一定要等底等高?学生做出正确判断后,再要求举出实例加以证明,加深其对三角形和平行四边形面积之间的区别、联系的理解。2、“盲从栽倒”法如今的学生缺少独立思考的能力,在课堂中经常跟随他人的判断而进行自身思维活动,因此,在“盲从”现象频繁的教学中,更应培养和发展学生的逻辑思维和批判思维。为助其形成这样的智力品质,笔者在教学“商不变性质”后,设计如下陷阱。判断题:(1)3700÷900=37÷9=4……1;(2)42÷12=(42÷2)÷(12÷2)。第(1)题学生很容易判断为正确,3700÷900=37÷9是根据商不变性质;37÷9=4……1是成立的;学生“盲从”地把3700÷900=4……1。在判断第(2)题时,学生又会“盲从”第(1)题的思维过程。有的同学分别计算出42÷12=3……6,(42÷2)÷(12÷2)=3……3。这时有同学就认为这是错误的,因为余数变了。当他们路过这样的“陷阱”而“栽倒”后,引导其精细检查自己的思维过程,再去反思、批判。当“爬起来”时就意味着获得了新知,增强自身“免疫力”,同时也完善了思维。三、在数量关系上巧设“陷阱”,培养学生思维的严谨性学生由于多次重复做某一类问题,在大脑中往往容易形成思维定势。要想克服学生的思维定势,可在数量关系上“偷梁换柱”,巧设“陷阱”,培养学生良好的审题习惯,发展思维的严谨性。“偷梁换柱”法:在解决问题时,为了打破学生的思维定势,可在条件上“偷梁”。比如在解决分数的应用题时,出示例题:一堆煤20吨,第一天运了全部的,第二天又运了吨,还剩多少吨?许多学生一看到题目就会想到“剩下的吨数=总吨数×剩下的占总数的几分之几”这个数量关系,粗心地把具体的数量“吨”混淆为一个分率,从而错误列式为20×(1--)=6(吨)。当老师用红笔圈出“”和“吨”后,此题的“陷阱”便一目了然。也可在提问时“换柱”。同样在解决分数的应用题时,出示例题:一根绳子全长50米,第一次剪去全长的,第二次剪去全长的,比原来短了多少米?当把题目中原来简单的问题“两次共剪去多少米?”替换成“比原来短了多少米?”之后,就形成了诱惑学生的一个绝好“陷阱”,学生还没注意到问题的特殊性,就在脑海中形成了这种“问题是‘求短多少,也就是在求差,所以要用减法”的思维定势。事实上,如果能够认真审题,理清题中的数量关系,此题不难解决。实践表明,通过“设置陷阱——上当受骗——分析反思”这一途径,可以打破学生的思维定势,同时培养学生细致的审题习惯,从而促使学生在题意的千变万化下保持思维的严谨性。四、在运算法则上巧设“陷阱”,培养学生思维的灵活性自从学习了一些定律并进行简便计算后,学生在四则混合运算时往往急于求成或跟着“感觉走”。此外,学生在初学某知识点后,也常常会概念模糊、张冠李戴。针对此种现象,可设置“陷阱”,让学生在“落陷”之后产生认知冲突,在后悔之余增强对算理的理解,从而达到对法则、定理的透彻理解,牢固掌握,灵活运用。“移花接木”法:在教学四则混合运算时,针对学生对运算法则的“目不明”“法不清”可设置“陷阱”。计算:(1)0.4+0.6÷3×1.5(2)0.7+0.3÷3第(1)题中0.4+0.6与第(2)题中的0.7+0.3,它们的和刚好等于“1”,这样就具有很大的诱惑力。因此,学生容易把先凑整“移植”到“简便运算”中,先算加法。误解成:(1)0.4+0.6÷0.3×1.5=1÷0.3×1.5(2)0.7+0.3÷3=1÷3。学生在经历“落入”与“走出”以上陷阱的过程中,不仅强化了运算法则的规范性,而且也激活了对定理、定律的思维灵活性。“移花接木”策略也可应用在解方程教学中。为了与初中衔接,一般不用“被减数、减数、差”或“被除数、除数、商”之间的关系来解方程,一般用“等式的基本性质”来解方程。在解方程时,学生经常会把除法与乘法“纠缠”在一起,导致对“等式的基本性质”模糊不清,有的甚至在解方程时有“法”不依,把“等式两边同时加上、减去、乘以或除以一个相同的数(0除外)”中的“相同的数”固定为数字。实践表明,通过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论