四川省广元市川师大万达中学新高考数学考前最后一卷预测卷及答案解析_第1页
四川省广元市川师大万达中学新高考数学考前最后一卷预测卷及答案解析_第2页
四川省广元市川师大万达中学新高考数学考前最后一卷预测卷及答案解析_第3页
四川省广元市川师大万达中学新高考数学考前最后一卷预测卷及答案解析_第4页
四川省广元市川师大万达中学新高考数学考前最后一卷预测卷及答案解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广元市川师大万达中学新高考数学考前最后一卷预测卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列若则()A.±6 B.6 C.-6 D.2.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-283.若实数满足不等式组,则的最大值为()A. B. C.3 D.24.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A. B. C. D.5.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.6.已知向量,,则与共线的单位向量为()A. B.C.或 D.或7.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是()A.12个月的PMI值不低于50%的频率为B.12个月的PMI值的平均值低于50%C.12个月的PMI值的众数为49.4%D.12个月的PMI值的中位数为50.3%8.已知数列的前项和为,且,,,则的通项公式()A. B. C. D.9.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是()A.3 B.4 C.5 D.610.“”是“,”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件11.若直线与曲线相切,则()A.3 B. C.2 D.12.已知x,y满足不等式组,则点所在区域的面积是()A.1 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知F为双曲线的右焦点,过F作C的渐近线的垂线FD,D为垂足,且(O为坐标原点),则C的离心率为________.14.若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:①为的重心;②;③当时,平面;④当三棱锥的体积最大时,三棱锥外接球的表面积为.其中,所有正确结论的序号是________________.15.如图,在矩形中,,是的中点,将,分别沿折起,使得平面平面,平面平面,则所得几何体的外接球的体积为__________.16.如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.参考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知为椭圆的左、右焦点,离心率为,点在椭圆上.(1)求椭圆的方程;(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.19.(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.20.(12分)已知数列的各项均为正数,为其前n项和,对于任意的满足关系式.(1)求数列的通项公式;(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.21.(12分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.22.(10分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.2、A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.3、C【解析】

作出可行域,直线目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.故选:C.【点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.4、B【解析】

考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又,当时,,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.5、B【解析】

利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.6、D【解析】

根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.【详解】因为,,则,所以,设与共线的单位向量为,则,解得或所以与共线的单位向量为或.故选:D.【点睛】本题考查向量的坐标运算以及共线定理和单位向量的定义.7、D【解析】

根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.8、C【解析】

利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.9、C【解析】

模拟程序的运行即可求出答案.【详解】解:模拟程序的运行,可得:p=1,S=1,输出S的值为1,满足条件p≤7,执行循环体,p=3,S=7,输出S的值为7,满足条件p≤7,执行循环体,p=5,S=31,输出S的值为31,满足条件p≤7,执行循环体,p=7,S=127,输出S的值为127,满足条件p≤7,执行循环体,p=9,S=511,输出S的值为511,此时,不满足条件p≤7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C.【点睛】本题主要考查程序框图,属于基础题.10、B【解析】

先求出满足的值,然后根据充分必要条件的定义判断.【详解】由得,即,,因此“”是“,”的必要不充分条件.故选:B.【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.11、A【解析】

设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.12、C【解析】

画出不等式表示的平面区域,计算面积即可.【详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.故选:C.【点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

求出焦点到渐近线的距离就可得到的等式,从而可求得离心率.【详解】由题意,一条渐近线方程为,即,∴,由得,∴,,∴.故答案为:2.【点睛】本题考查求双曲线的离心率,解题关键是求出焦点到渐近线的距离,从而得出一个关于的等式.14、①②③【解析】

①点在平面内的正投影为点,而正方体的体对角线与和它不相交的的面对角线垂直,所以直线垂直于平面,而为正三角形,可得为正三角形的重心,所以①是正确的;②取的中点,连接,则点在平面的正投影在上,记为,而平面平面,所以,所以②正确;③若设,则由可得,然后对应边成比例,可解,所以③正确;④由于,而的面积是定值,所以当点到平面的距离最大时,三棱锥的体积最大,而当点与点重合时,点到平面的距离最大,此时为棱长为的正四面体,其外接球半径,则球,所以④错误.【详解】因为,连接,则有平面平面为正三角形,所以为正三角形的中心,也是的重心,所以①正确;由平面,可知平面平面,记,由,可得平面平面,则,所以②正确;若平面,则,设由得,易得,由,则,由得,,解得,所以③正确;当与重合时,最大,为棱长为的正四面体,其外接球半径,则球,所以④错误.故答案为:①②③【点睛】此题考查立体几何中的垂直、平行关系,求几何体的体积,考查空间想象能力和推理能力,属于难题.15、【解析】

根据题意,画出空间几何体,设的中点分别为,并连接,利用面面垂直的性质及所给线段关系,可知几何体的外接球的球心为,即可求得其外接球的体积.【详解】由题可得,,均为等腰直角三角形,如图所示,设的中点分别为,连接,则,.因为平面平面,平面平面,所以平面,平面,易得,则几何体的外接球的球心为,半径,所以几何体的外接球的体积为.故答案为:.【点睛】本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.16、20【解析】

由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.【详解】由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高为4的圆柱组合而成,其体积为.故答案为:20.【点睛】本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)详见解析;(Ⅱ)①;②数学期望为6,方差为2.4.【解析】

(1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率.②由列联表可知,抽到经常网购的市民的频率为:,由题意,由此能求出随机变量的数学期望和方差.【详解】解:(1)完成列联表(单位:人):经常网购偶尔或不用网购合计男性5050100女性7030100合计12080200由列联表,得:,∴能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,∴选取的3人中至少有2人经常网购的概率为:.②由列联表可知,抽到经常网购的市民的频率为:,将频率视为概率,∴从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6,由题意,∴随机变量的数学期望,方差D(X)=.【点睛】本题考查独立检验的应用,考查概率、离散型随机变量的分布列、数学期望、方差的求法,考查古典概型、二项分布等基础知识,考查运算求解能力,是中档题.18、(1);(2)存在,.【解析】

(1)由条件建立关于的方程组,可求得,得出椭圆的方程;(2)①当直线的斜率不存在时,可求得,求得,②当直线的斜率存在且不为0时,设联立直线与椭圆的方程,求出线段,再由得出线段,根据等差中项可求得,得出结论.【详解】(1)由条件得,所以椭圆的方程为:;(2),①当直线的斜率不存在时,,此时,②当直线的斜率存在且不为0时,设,联立消元得,设,,直线的斜率为,同理可得,所以,综合①②,存在常数,使得成等差数列.【点睛】本题考查利用椭圆的离心率求椭圆的标准方程,直线与椭圆的位置关系中的弦长公式的相关问题,当两直线的斜率具有关系时,可能通过斜率的代换得出另一条线段的弦长,属于中档题.19、(1);(2)证明见解析;(3)证明见解析.【解析】

(1)求得函数的导函数,由此求得求当日产量为吨时的边际成本.(2)将所要证明不等式转化为证明,构造函数,利用导数证得,由此证得不等式成立.(3)利用(2)的结论,判断出,由此结合对数运算,证得.【详解】(1)因为所以当时,(2)要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论