版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,为中点,且,若,则()A. B. C. D.2.执行如图所示的程序框图,若输入,,则输出的值为()A.0 B.1 C. D.3.设,则()A. B. C. D.4.设等比数列的前项和为,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知函数,当时,恒成立,则的取值范围为()A. B. C. D.6.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为()附:若,则,.A.0.6826 B.0.8413 C.0.8185 D.0.95447.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是()A.若,且,则B.若,且,则C.若,且,则D.若,且,则8.已知函数f(x)=,若关于x的方程f(x)=kx-恰有4个不相等的实数根,则实数k的取值范围是()A. B.C. D.9.已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是()A. B.C. D.10.已知等差数列的前13项和为52,则()A.256 B.-256 C.32 D.-3211.已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是()A. B. C. D.12.如图,四边形为正方形,延长至,使得,点在线段上运动.设,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线,点,在曲线上,且以为直径的圆的方程是.则_______.14.如图是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,,则的面积为________.15.若变量,满足约束条件则的最大值是______.16.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角,,的对边分别是,,,已知.(1)求角;(2)若,,求的面积.18.(12分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.19.(12分)在三棱柱中,,,,且.(1)求证:平面平面;(2)设二面角的大小为,求的值.20.(12分)已知数列中,,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.21.(12分)已知数列是各项均为正数的等比数列,,且,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,为数列的前项和,记,证明:.22.(10分)如图,在直三棱柱中,分别是中点,且,.求证:平面;求点到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
选取向量,为基底,由向量线性运算,求出,即可求得结果.【详解】,,,,,.故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.2、A【解析】
根据输入的值大小关系,代入程序框图即可求解.【详解】输入,,因为,所以由程序框图知,输出的值为.故选:A【点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.3、D【解析】
结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【详解】由,即,又,即,,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.4、C【解析】
根据等比数列的前项和公式,判断出正确选项.【详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.5、A【解析】
分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【点睛】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.6、C【解析】
根据服从的正态分布可得,,将所求概率转化为,结合正态分布曲线的性质可求得结果.【详解】由题意,,,则,,所以,.故果实直径在内的概率为0.8185.故选:C【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.7、D【解析】
利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确.故选:.【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理.一般可借助正方体模型,以正方体为主线直观感知并准确判断.8、D【解析】
由已知可将问题转化为:y=f(x)的图象和直线y=kx-有4个交点,作出图象,由图可得:点(1,0)必须在直线y=kx-的下方,即可求得:k>;再求得直线y=kx-和y=lnx相切时,k=;结合图象即可得解.【详解】若关于x的方程f(x)=kx-恰有4个不相等的实数根,则y=f(x)的图象和直线y=kx-有4个交点.作出函数y=f(x)的图象,如图,故点(1,0)在直线y=kx-的下方.∴k×1->0,解得k>.当直线y=kx-和y=lnx相切时,设切点横坐标为m,则k==,∴m=.此时,k==,f(x)的图象和直线y=kx-有3个交点,不满足条件,故所求k的取值范围是,故选D..【点睛】本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题.9、B【解析】
利用换元法设,则等价为有且只有一个实数根,分三种情况进行讨论,结合函数的图象,求出的取值范围.【详解】解:设,则有且只有一个实数根.当时,当时,,由即,解得,结合图象可知,此时当时,得,则是唯一解,满足题意;当时,此时当时,,此时函数有无数个零点,不符合题意;当时,当时,,此时最小值为,结合图象可知,要使得关于的方程有且只有一个实数根,此时.综上所述:或.故选:A.【点睛】本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.10、A【解析】
利用等差数列的求和公式及等差数列的性质可以求得结果.【详解】由,,得.选A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.11、C【解析】
设,,,,设直线的方程为:,与抛物线方程联立,由△得,利用韦达定理结合已知条件得,,代入上式即可求出的取值范围.【详解】设直线的方程为:,,,,,联立方程,消去得:,△,,且,,,线段的中点为,,,,,,,,把代入,得,,,故选:【点睛】本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题.12、C【解析】
以为坐标原点,以分别为x轴,y轴建立直角坐标系,利用向量的坐标运算计算即可解决.【详解】以为坐标原点建立如图所示的直角坐标系,不妨设正方形的边长为1,则,,设,则,所以,且,故.故选:C.【点睛】本题考查利用向量的坐标运算求变量的取值范围,考查学生的基本计算能力,本题的关键是建立适当的直角坐标系,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设所在直线方程为设、点坐标分别为,,都在上,代入曲线方程,两式作差可得,从而可得直线的斜率,联立直线与的方程,由,利用弦长公式即可求解.【详解】因为是圆的直径,必过圆心点,设所在直线方程为设、点坐标分别为,,都在上,故两式相减,可得(因为是的中点),即联立直线与的方程:又,即,即又因为,则有即∴.故答案为:【点睛】本题考查了直线与圆锥曲线的位置关系、弦长公式,考查了学生的计算能力,综合性比较强,属于中档题.14、【解析】
根据个全等的三角形,得到,设,求得,利用余弦定理求得,再利用三角形的面积公式,求得三角形的面积.【详解】由于三角形是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,所以.在三角形中,.设,则.由余弦定理得,解得.所以三角形边长为,面积为.故答案为:【点睛】本题考查了等边三角形的面积计算公式、余弦定理、全等三角形的性质,考查了推理能力与计算能力,属于中档题.15、9【解析】
做出满足条件的可行域,根据图形,即可求出的最大值.【详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.16、【解析】
由三视图还原原几何体,该几何体为四棱锥,底面为直角梯形,,,侧棱底面,由棱锥体积公式求棱锥体积,由勾股定理求最长棱的长度.【详解】由三视图还原原几何体如下图所示:该几何体为四棱锥,底面为直角梯形,,,侧棱底面,则该几何体的体积为,,,因此,该棱锥的最长棱的长度为.故答案为:;.【点睛】本题考查由三视图求体积、棱长,关键是由三视图还原原几何体,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用余弦定理可求,从而得到的值.(2)利用诱导公式和正弦定理化简题设中的边角关系可得,得到值后利用面积公式可求.【详解】(1)由,得.所以由余弦定理,得.又因为,所以.(2)由,得.由正弦定理,得,因为,所以.又因,所以.所以的面积.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.18、(1)(2)【解析】
(1)因为,所以,由余弦定理得,化简得,可得,解得,又因为,所以.(6分)(2)因为,所以,则(当且仅当时,取等号).由(1)得(当且仅当时,取等号),解得.所以(当且仅当时,取等号),所以的周长的最小值为.19、(1)证明见解析;(2).【解析】
(1)要证明平面平面,只需证明平面即可;(2)取的中点D,连接BD,以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,分别计算平面的法向量为与平面的法向量为,利用夹角公式计算即可.【详解】(1)在中,,所以,即.因为,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由题意知,四边形为菱形,且,则为正三角形,取的中点D,连接BD,则.以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,则,,,,.设平面的法向量为,且,.由得取.由四边形为菱形,得;又平面,所以;又,所以平面,所以平面的法向量为.所以.故.【点睛】本题考查面面垂直的判定定理以及利用向量法求二面角正弦值的问题,在利用向量法时,关键是点的坐标要写准确,本题是一道中档题.20、(1)(2)存在,【解析】
由数列为“数列”可得,,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,,,两式相减得,,据此可得,当时,,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得,在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以.(2)由题意得,故,两式相减得所以,当时,又因为所以当时,所以成立,所以当时,数列是常数列,所以因为当时,成立,所以,所以在中令,因为,所以可得,所以,由时,且为整数,可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融科技下知识产权融资的实践与探索
- 个人住房抵押贷款合同
- 中外双方进出口合同范本
- 二手房全款交易合同范本
- 个人租赁仓储空间的合同范本
- 中外合作研发合同范本(人工智能)
- 专业技术人才培养合作合同
- 产业投资合作协议合同模板
- 主要农作物新品种推广合同示范文本
- 个人与合作方仓储运输合同例文
- 测绘工程产品价格表汇编
- 拘留所教育课件02
- 语言和语言学课件
- 《工作场所安全使用化学品规定》
- 装饰图案设计-装饰图案的形式课件
- 2022年菏泽医学专科学校单招综合素质考试笔试试题及答案解析
- 护理学基础教案导尿术catheterization
- ICU护理工作流程
- 广东版高中信息技术教案(全套)
- 市政工程设施养护维修估算指标
- 分布式光伏屋顶调查表
评论
0/150
提交评论