版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市理工大附中高一数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角的对边分别是,若,则角的大小为()A.或 B.或 C. D.2.已知变量和满足关系,变量与正相关.下列结论中正确的是()A.与负相关,与负相关B.与正相关,与正相关C.与正相关,与负相关D.与负相关,与正相关3.已知函数(,)的部分图像如图所示,则的值分别是()A. B.C. D.4.已知:,则()A. B. C. D.5.如图,在中,若,,,用表示为()A. B.C. D.6.如图是一个射击靶的示意图,其中每个圆环的宽度与中心圆的半径相等.某人朝靶上任意射击一次没有脱靶,则其命中深色部分的概率为()A. B. C. D.7.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.8.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.9.已知角的终边经过点,则A. B. C. D.10.设的内角所对的边分别为,且,已知的面积等于,,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆锥的高为,体积为,用平行于圆锥底面的平面截圆锥,得到的圆台体积是,则该圆台的高为_______.12.已知圆C的方程为,一定点为A(1,2),要使过A点作圆的切线有两条,则a的取值范围是____________13.函数的定义域为_________.14.向量满足,,则向量的夹角的余弦值为_____.15.设向量满足,,,.若,则的最大值是________.16.数列中,如果存在使得“,且”成立(其中,),则称为的一个“谷值”。若且存在“谷值”则实数的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如图:(1)求频率分布直方图中的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数和中位数(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组相应抽取的人数:年龄人数②若从年龄在的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在的概率.18.已知数列是等差数列,是其前项和.(1)求数列的通项公式;(2)设,求数列的前项和.19.不等式的解集为______.20.在平面直角坐标系中,以轴为始边,作两个角,它们终边分别经过点和,其中,,且.(1)求的值;(2)求的值.21.如图,在四棱锥中,平面平面,,且,.(Ⅰ)求证:;(Ⅱ)若为的中点,求证:平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
通过给定条件直接利用正弦定理分析,注意讨论多解的情况.【详解】由正弦定理可得:,,∵,∴为锐角或钝角,∴或.故选B.【点睛】本题考查解三角形中正弦定理的应用,难度较易.出现多解时常借助“大边对大角,小边对小角”来进行取舍.2、A【解析】
因为变量和满足关系,一次项系数为,所以与负相关;变量与正相关,设,所以,得到,一次项系数小于零,所以与负相关,故选A.3、B【解析】
通过函数图像可计算出三角函数的周期,从而求得w,再代入一个最低点即可得到答案.【详解】,,又,,,又,,故选B.【点睛】本题主要考查三角函数的图像,通过周期求得w是解决此类问题的关键.4、A【解析】
观察已知角与待求的角之间的特殊关系,运用余弦的二倍角公式和诱导公式求解.【详解】令,则,所以,所以,故选A.【点睛】本题关键在于观察出已知角与待求的角之间的特殊关系,属于中档题.5、C【解析】
根据向量的加减法运算和数乘运算来表示即可得到结果.【详解】本题正确选项:【点睛】本题考查根据向量的线性运算,来利用已知向量表示所求向量;关键是能够熟练应用向量的加减法运算和数乘运算法则.6、D【解析】
分别求出大圆面积和深色部分面积即可得解.【详解】设中心圆的半径为,所以中心圆的面积为,8环面积为,射击靶的面积为,所以命中深色部分的概率为.故选:D【点睛】此题考查几何概型,属于面积型,关键在于准确求解面积,根据圆环特征分别求出面积即可得解.7、C【解析】试题分析:有两个面平行,其余各面都是四边形的几何体,A错;有两个面平行,其余各面都是平行四边形的几何体如图所示,B错;用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,D错;由棱柱的定义,C正确;考点:1、棱柱的概念;2、棱台的概念.8、D【解析】
根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.9、A【解析】
根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.10、D【解析】
由正弦定理化简已知,结合,可求,利用同角三角函数基本关系式可求,进而利用三角形的面积公式即可解得的值.【详解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面积,解得.故选:.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设该圆台的高为,由题意,得用平行于圆锥底面的平面截圆锥,得到的小圆锥体积是,则,解得,即该圆台的高为3.点睛:本题考查圆锥的结构特征;在处理圆锥的结构特征时可记住常见结论,如本题中用平行于圆锥底面的平面截圆锥,截面与底面的面积之比是两个圆锥高的比值的平方,所得两个圆锥的体积之比是两个圆锥高的比值的立方.12、【解析】
使过A点作圆的切线有两条,定点在圆外,代入圆方程计算得到答案.【详解】已知圆C的方程为,要使过A点作圆的切线有两条即点A(1,2)在圆C外:恒成立.综上所述:故答案为:【点睛】本题考查了点和圆的位置关系,通过切线数量判断位置关系是解题的关键.13、【解析】
根据对数函数的真数大于0,列出不等式求解集即可.【详解】对数函数f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定义域为(1,+∞).故答案为:(1,+∞).【点睛】本题考查了求对数函数的定义域问题,是基础题.14、【解析】
通过向量的垂直关系,结合向量的数量积求解向量的夹角的余弦值.【详解】向量,满足,,可得:,,向量的夹角为,所以.故答案为.【点睛】本题考查向量的数量积的应用,向量的夹角的余弦函数值的求法.考查计算能力.属于基础题.15、【解析】
令,计算出模的最大值即可,当与同向时的模最大.【详解】令,则,因为,所以当,,因此当与同向时的模最大,【点睛】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析.16、【解析】
求出,,,当,递减,递增,分别讨论,,是否存在“谷值”,注意运用单调性即可.【详解】解:当时,有,,当,递减,递增,且.若时,有,则不存在“谷值”;若时,,则不存在“谷值”;若时,①,则不存在"谷值";②,则不存在"谷值";③,存在"谷值"且为.综上所述,的取值范围是故答案为:【点睛】本题考查新定义及运用,考查数列的单调性和运用,正确理解新定义是迅速解题的关键,是一道中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),平均数为,中位数为(2)①见解析②【解析】
(1)由频率分布直方图各个小矩形的面积之和为1可得,用区间中点值代替可计算均值,中位数把频率分布直方图中小矩形面积等分.(2)①分层抽样,是按比例抽取人数;②年龄在有2人,在有4人,设在的是,,在的是,可用列举法列举出选2人的所有可能,然后可计算出概率.【详解】(1)由频率分布直方图各个小矩形的面积之和为1,得在频率分布直方图中,这100位参赛者年龄的样本平均数为:设中位数为,由,解得.(2)①每组应各抽取人数如下表:年龄人数12485②根据分层抽样的原理,年龄在有2人,在有4人,设在的是,,在的是,列举选出2人的所有可能如下:,共15种情况.设“这2人至少有一人的年龄在区间”为事件,则包含:共9种情况则【点睛】本题考查频率分布直方图,考查样本数据特征、古典概型,属于基础题型.18、(1)(2)【解析】试题分析:(1)将已知条件转化为首项和公差表示,解方程组可求得基本量的值,从而确定通项公式;(2)首先化简数列的通项公式,结合特点采用分组求和法求解试题解析:(1)∵数列是等差数列,是其前项和,.∴,解得,∴.(2)∵,考点:数列求通项公式及数列求和19、【解析】
根据一元二次不等式的解法直接求解即可.【详解】因为方程的根为:,,所以不等式的解集为.故答案为:.【点睛】本题考查一元二次不等式的解法,考查对基础知识和基本技能的掌握,属于基础题.20、(1);(2).【解析】
(1)根据正弦的定义求得,再运用余弦的二倍角公式求解,(2)由(1)问可得、两点的坐标,从而再运用正切的和角公式求解.【详解】(1)由得:所以:(2)由则故因此.【点睛】本题考查三角函数的定义和余弦的二倍角公式和正切的和角公式,属于基础题.21、(Ⅰ)见解析;(Ⅱ)见解析【解析】
(Ⅰ)线线垂直先求线面垂直,即平面,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024房产租赁合同简单版协议书
- 2024解除劳动合同证明书范文及注意事项
- 2024补偿贸易设备进口合同书范本
- 2024服务中心加盟合同格式
- 2024民事合同的拟定说明
- 食品安全总监考试练习试题附答案
- 盐城师范学院《矢量图形处理》2021-2022学年第一学期期末试卷
- 2月份消毒供应中心业务学习、制度职责、应急预案、三基理论考试专项试卷
- 2024年炼油、化工生产专用设备项目建议书
- 交付检查体系及标准考试复习测试有答案
- 高考英语高频短语按字母排序
- 世界各国国家代号、区号、时差
- 旅游列车开行管理办法
- 园区网络规划与设计管理 毕业设计
- 最新原创企业安全生产设备维修记录表.doc
- 水利水电工程招标文件(示范文本)勘察设计
- 老年人认知功能量表
- 仓储管理程序搬运、储存、包装、保存与交货管制
- 激光原理及应用陈家璧第二版
- 微积分的发展历史
- (完整版)专项资金审计实施方案(20210206155752)
评论
0/150
提交评论