版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏回族自治区银川市兴庆区银川一中2025届高一数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则等于()A. B. C. D.2.点到直线(R)的距离的最大值为A. B. C.2 D.3.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.4.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中正确的命题是()A.①② B.②③ C.③④ D.④5.已知函数是连续的偶函数,且时,是单调函数,则满足的所有之积为()A. B. C. D.6.已知,,,则的最小值为()A. B. C.7 D.97.已知平面上四个互异的点、、、满足:,则的形状一定是()A.等边三角形 B.直角三角形 C.等腰三角形 D.钝角三角形8.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,9.设,则“数列为等比数列”是“数列满足”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件10.已知分别为的三边长,且,则=()A. B. C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.设为,的反函数,则的值域为______.12.若数列的前项和为,则该数列的通项公式为______.13.关于的不等式的解集是,则______.14.若的面积,则=15.若,方程的解为______.16.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌粒种子中抽取粒进行检测,现将这粒种子编号如下,,,,若从随机数表第行第列的数开始向右读,则所抽取的第粒种子的编号是.(下表是随机数表第行至第行)844217533157245506887704744767217633502583921206766301637859169555671998105071751286735807443952387933211234297864560782524207443815510013429966027954三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,点在边上,为的平分线,.(1)求;(2)若,,求.18.“精准扶贫”的重要思想最早在2013年11月提出,到湘西考察时首次作出“实事求是,因地制宜,分类指导,精准扶贫”的重要指导。2015年在贵州调研时强调要科学谋划好“十三五”时期精准扶贫开发工作,确保贫困人口到2020年如期脱贫。某农科所实地考察,研究发现某贫困村适合种植A、B两种药材,可以通过种植这两种药材脱贫。通过大量考察研究得到如下统计数据:药材A的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:编号12345年份20152016201720182019单价(元/公斤)1820232529药材B的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:(1)若药材A的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计2020年药材A的单价;(2)用上述频率分布直方图估计药材B的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材A还是药材B?并说明理由.附:,.19.已知数列的前n项和为,满足:.(1)证明:数列是等比数列;(2)令,,求数列的前n项和.20.在中,角所对的边分别为,,,,为的中点.(1)求的长;(2)求的值.21.如图,四棱柱的底面是菱形,平面,,,,点为的中点.(1)求证:直线平面;(2)求证:平面;(3)求直线与平面所成的角的正切值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.2、A【解析】
把直线方程化为,得到直线恒过定点,由此可得点P到直线的距离的最大值就是点P到定点的距离,得到答案.【详解】由题意,直线可化为,令,解得,即直线恒过定点,则点P到直线的距离的最大值就是点P到定点的距离为:,故选A.【点睛】本题主要考查了直线方程的应用,其中解答中把直线方程化为,得出直线恒过定点是解答本题的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.3、D【解析】
根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.4、D【解析】
利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可.【详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题.故选D.【点睛】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.5、D【解析】
由y=f(x+2)为偶函数分析可得f(x)关于直线x=2对称,进而分析可得函数f(x)在(2,+∞)和(﹣∞,2)上都是单调函数,据此可得若f(x)=f(1),则有x=1或4﹣x=1,变形为二次方程,结合根与系数的关系分析可得满足f(x)=f(1)的所有x之积,即可得答案.【详解】根据题意,函数y=f(x+2)为偶函数,则函数f(x)关于直线x=2对称,又由当x>2时,函数y=f(x)是单调函数,则其在(﹣∞,2)上也是单调函数,若f(x)=f(1),则有x=1或4﹣x=1,当x=1时,变形可得x2+3x﹣3=0,有2个根,且两根之积为﹣3,当4﹣x=1时,变形可得x2+x﹣13=0,有2个根,且两根之积为﹣13,则满足f(x)=f(1)的所有x之积为(﹣3)×(﹣13)=39;故选:D.【点睛】本题考查抽象函数的应用,涉及函数的对称性与单调性的综合应用,属于综合题.6、B【解析】
根据条件可知,,,从而得出,这样便可得出的最小值.【详解】;,且,;;,当且仅当时等号成立;;的最小值为.故选:.【点睛】考查基本不等式在求最值中的应用,注意应用基本不等式所满足的条件及等号成立的条件.7、C【解析】
由向量的加法法则和减法法则化简已知表达式,再由向量的垂直和等腰三角形的三线合一性质得解.【详解】设边的中点,则所以在中,垂直于的中线,所以是等腰三角形.故选C.【点睛】本题考查向量的线性运算和数量积,属于基础题.8、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.9、A【解析】
“数列为等比数列”,则,数列满足.反之不能推出,可以举出反例.【详解】解:“数列为等比数列”,则,数列满足.充分性成立;反之不能推出,例如,数列满足,但数列不是等比数列,即必要性不成立;故“数列为等比数列”是“数列满足”的充分非必要条件故选:.【点睛】本题考查了等比数列的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.10、B【解析】
由已知直接利用正弦定理求解.【详解】在中,由A=45°,C=60°,c=3,由正弦定理得.故选B.【点睛】本题考查三角形的解法,考查正弦定理的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求出原函数的值域可得出其反函数的定义域,取交集可得出函数的定义域,再由函数的单调性可求出该函数的值域.【详解】函数在上为增函数,则函数的值域为,所以,函数的定义域为.函数的定义域为,由于函数与函数单调性相同,可知,函数在上为增函数.当时,函数取得最小值;当时,函数取得最大值.因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,考查函数单调性的应用,明确两个互为反函数的两个函数具有相同的单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题.12、【解析】
由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.13、【解析】
利用二次不等式解集与二次方程根的关系,由二次不等式的解集得到二次方程的根,再利用根与系数的关系,得到和的值,得到答案.【详解】因为关于的不等式的解集是,所以关于的方程的解是,由根与系数的关系得,解得,所以.【点睛】本题考查二次不等式解集和二次方程根之间的关系,属于简单题.14、【解析】试题分析:,.考点:三角形的面积公式及余弦定理的变形.点评:由三角形的面积公式,再根据,直接可求出tanC的值,从而得到C.15、【解析】
运用指数方程的解法,结合指数函数的值域,可得所求解.【详解】由,即,因,解得,即.故答案:.【点睛】本题考查指数方程的解法,以及指数函数的值域,考查运算能力,属于基础题.16、1【解析】试题分析:依据随机数表,抽取的编号依次为785,567,199,1.第四粒编号为1.考点:随机数表.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)令,正弦定理,得,代入面积公式计算得到答案.(2)由题意得到,化简得到,,再利用面积公式得到答案.【详解】(1)因为的平分线,令在中,,由正弦定理,得所以.(2)因为,所以,又由,得,,因为,所以所以.【点睛】本题考查了面积的计算,意在考查学生灵活利用正余弦定理和面积公式解决问题的能力.18、(1),当时,;(2)应该种植A种药材【解析】
(1)首先计算和,将数据代入公式得到回归方程,再取得到2020年单价.(2)计算B药材的平均产量,得到B药材的总产值,与(1)中A药材作比较,选出高的一个.【详解】解:(1),,当时,(2)利用概率和为1得到430—450频率/组距为0.005B药材的亩产量的平均值为:故A药材产值为B药材产值为应该种植A种药材【点睛】本题考查了回归方程及平均值的计算,意在考察学生的计算能力.19、(1)证明见解析(2)【解析】
(1)利用当时,求证即可;(2)先结合(1)求得,再由,然后累加求和即可.【详解】解:(1)因为,①,②①-②得:,即,又,即,则,即数列是以6为首项,3为公比的等比数列;(2)由(1)得,则,即,则,即,故.【点睛】本题考查了利用定义法证明等比数列,重点考查了公式法求和及裂项求和法求和,属中档题.20、(1).(2)【解析】
(1)在中分别利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【详解】解:(1)在中,由余弦定理得,∴,解得∵为的中点,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【点睛】本题考查解三角形中的正余弦定理的运用,难度较易.对于给定图形的解三角形问题,一定要注意去结合图形去分析.21、(1)见解析;(2)见解析;(3)【解析】
(1)只需证明PO∥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学一年级简短周记(10篇)
- 2024年非晶、微晶合金项目合作计划书
- THAM-hydrochloride-99-for-cell-culture-Tris-HCl-99-for-cell-culture-生命科学试剂-MCE
- Tetrahydro-β-carboline-Standard-生命科学试剂-MCE
- tert-Butyl-5-bromoisoindoline-2-carboxylate-Tert-butyl-5-bromo-1-3-dihydro-2H-isoindole-2-carboxylate-生命科学试剂-MCE
- 2024-2025学年新教材高中地理模块素养评价B练习含解析鲁教版选择性必修3
- 初中历史解题技巧新人教版
- 通史版2025版高考历史一轮复习作业提升练二十六文艺复兴与宗教改革含解析
- 2024房屋装修合同范本最
- 2024房产租赁合同简单版协议书
- 慢性胃炎胃镜报告
- 子宫腺肌病病例分析报告
- 犯罪心理学-第五章不同犯罪类型的心理学分析课件
- (完整版)量子信息与量子计算课件
- 老年人心脏病的护理与康复
- 食堂安全培训内容
- 飞行器制造职业生涯规划书
- 货物运输方案计划书
- 2024年的重要事件
- 农民工工资监理细则
- 高热惊厥急救及护理课件
评论
0/150
提交评论