2025届河南省南阳市六校高一数学第二学期期末经典模拟试题含解析_第1页
2025届河南省南阳市六校高一数学第二学期期末经典模拟试题含解析_第2页
2025届河南省南阳市六校高一数学第二学期期末经典模拟试题含解析_第3页
2025届河南省南阳市六校高一数学第二学期期末经典模拟试题含解析_第4页
2025届河南省南阳市六校高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省南阳市六校高一数学第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则()A. B.C. D.2.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.3.已知等差数列{}的前n项和为,且S8=92,a5=13,则a4=A.16 B.13 C.12 D.104.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择的游戏盘是A. B. C. D.5.从某健康体检中心抽取了8名成人的身高数据(单位:厘米),数据分别为172,170,172,166,168,168,172,175,则这组数据的中位数和众数分别是()A.171172 B.170172 C.168172 D.1701756.已知,则的值域为()A. B. C. D.7.已知、为锐角,,,则()A. B. C. D.8.已知偶函数在区间上单调递增,则满足的的取值范围是()A. B.C. D.9.若,且,则的值是()A. B. C. D.10.若复数(是虚数单位)是纯虚数,则实数的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,若,且它的前n项和有最大值,则当取得最小正值时,n的值为_______.12.若关于的不等式的解集为,则__________13.已知圆锥如图所示,底面半径为,母线长为,则此圆锥的外接球的表面积为___.14.给出下列四个命题:①正切函数在定义域内是增函数;②若函数,则对任意的实数都有;③函数的最小正周期是;④与的图象相同.以上四个命题中正确的有_________(填写所有正确命题的序号)15.一艘海轮从出发,沿北偏东方向航行后到达海岛,然后从出发沿北偏东方向航行后到达海岛,如果下次直接从沿北偏东方向到达,则______.16.已知数列是等差数列,,那么使其前项和最小的是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价元99.29.49.69.810销量件1009493908578(1)若销量与单价服从线性相关关系,求该回归方程;(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。附:对于一组数据,,……,其回归直线的斜率的最小二乘估计值为;本题参考数值:.18.已知角的顶点与原点重合,始边与轴的非负半轴重合,终边过点.(1)求的值;(2)已知为锐角,,求的值.19.已知数列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求数列{an}的通项公式:(2)若对任意的n∈N*,不等式1≤man≤5恒成立,求实数m的取值范围.20.已知函数,其图象的一个对称中心是,将的图象向左平移个单位长度后得到函数的图象.(1)求函数的解析式;(2)若对任意,当时,都有,求实数的最大值;(3)若对任意实数在上与直线的交点个数不少于6个且不多于10个,求实数的取值范围.21.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由指数函数的性质得,由对数函数的性质得,根据正切函数的性质得,即可求解,得到答案.【详解】由指数函数的性质,可得,由对数函数的性质可得,根据正切函数的性质,可得,所以,故选B.【点睛】本题主要考查了指数式、对数式以及正切函数值的比较大小问题,其中解答中熟记指数函数与对数函数的性质,以及正切函数的性质得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.3、D【解析】

利用等差数列前项和公式化简已知条件,并用等差数列的性质转化为的形式,由此求得的值.【详解】依题意,,解得,故选D.【点睛】本小题主要考查等差数列前项和公式,以及等差数列的性质,解答题目过程中要注意观察已知条件的下标.属于基础题.4、A【解析】由几何概型公式:A中的概率为,B中的概率为,C中的概率为,D中的概率为.本题选择A选项.点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.5、A【解析】

由中位数和众数的定义,即可得到本题答案.【详解】把这组数据从小到大排列为166,168,168,170,172,172,172,175,则中位数为,众数为172.故选:A【点睛】本题主要考查中位数和众数的求法.6、C【解析】

由已知条件,先求出函数的周期,由于,即可求出值域.【详解】因为,所以,又因为,所以当时,;当时,;当时,,所以的值域为.故选:C.【点睛】本题考查三角函数的值域,利用了正弦函数的周期性.7、B【解析】

利用同角三角函数的基本关系求出的值,然后利用两角差的正切公式可求得的值.【详解】因为,且为锐角,则,所以,因为,所以故选:B.【点睛】本题考查利用两角差的正切公式求值,解答的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.8、A【解析】

根据题意,由函数的奇偶性分析可得,进而结合单调性分析可得,解可得的取值范围,即可得答案.【详解】解:根据题意,为偶函数,则,

又由函数在区间上单调递增,

则,

解得:,

故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是得到关于的不等式.9、A【解析】

对两边平方,可得,进而可得,再根据,可知,由此即可求出结果.【详解】因为,所以,所以,所以,又,所以所以.故选:A.【点睛】本题主要考查了同角的基本关系,属于基础题.10、C【解析】,且是纯虚数,,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】试题分析:因为等差数列前项和有最大值,所以公差为负,所以由得,所以,=,所以当时,取到最小正值.考点:1、等差数列性质;2、等差数列的前项和公式.【方法点睛】求等差数列前项和的最值常用的方法有:(1)先求,再利用或求出其正负转折项,最后利用单调性确定最值;(2)利用性质求出其正负转折项,便可求得前项和的最值;(3)利用等差数列的前项和(为常数)为二次函数,根据二次函数的性质求最值.12、1【解析】

根据二次不等式和二次方程的关系,得到是方程的两根,由根与系数的关系得到的值.【详解】因为关于的不等式的解集为所以是方程的两根,,由根与系数的关系得,解得【点睛】本题考查一元二次不等式和一元二次方程之间的关系,根与系数之间的关系,属于简单题.13、【解析】

根据圆锥的底面和外接球的截面性质可得外接球的球心在上,再根据勾股定理可得求的半径.【详解】由圆锥的底面和外接球的截面性质可得外接球的球心在上,设球心为,球的半径为,则,圆,因为,所以,所以,,则有.解得,则.【点睛】本题主要考查了几何体的外接球,关键是会找到球心求出半径,通常结合勾股定理求.属于难题.14、②③④【解析】

①利用反例证明命题错误;②先判断为其中一条对称轴;③通过恒等变换化成;④对两个解析式进行变形,得到定义域和对应关系均一样.【详解】对①,当,显然,但,所以,不符合增函数的定义,故①错;对②,当时,,所以为的一条对称轴,当取,取时,显然两个数关于直线对称,所以,即成立,故②对;对③,,,故③对;对④,因为,,两个函数的定义域都是,解析式均为,所以函数图象相同,故④对.综上所述,故填:②③④.【点睛】本题对三角函数的定义域、值域、单调性、对称性、周期性等知识进行综合考查,求解过程中要注意数形结合思想的应用.15、【解析】

首先根据余弦定理求出,在根据正弦定理求出,即可求出【详解】有题知.所以.在中,,即,解得.所以,故答案为:【点睛】本题主要考查正弦定理和余弦定理的实际应用,熟练掌握公式为解题的关键,属于中档题.16、5【解析】

根据等差数列的前n项和公式,判断开口方向,计算出对称轴,即可得出答案。【详解】因为等差数列前项和为关于的二次函数,又因为,所以其对称轴为,而,所以开口向上,因此当时最小.【点睛】本题考查等差数列前n项和公式的性质,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)为使工厂获得最大利润,该产品的单价应定为9.5元.【解析】

(1)先根据公式求,再根据求即可求解;(2)先求出利润的函数关系式,再求函数的最值.【详解】解:(1)=…又所以故回归方程为(2)设该产品的售价为元,工厂利润为元,当时,利润,定价不合理。由得,故,,当且仅当,即时,取得最大值.因此,为使工厂获得最大利润,该产品的单价应定为9.5元.【点睛】本题考查线性回归方程和二次函数的最值.线性回归方程的计算要根据已知选择合适的公式.求二次函数的最值常用方法:1、根据函数单调性;2、配方法;3、基本不等式,注意等式成立的条件.18、(1);(2).【解析】

(1)利用三角函数的定义可求出,再根据二倍角的余弦公式即可求解.(2)由(1)可得,再利用同角三角函数的基本关系可得,由,利用两角差的正切公式即可求解.【详解】解:(1)依题意得,,,所以.(2)由(1)得,,故.因为,,,所以,又因为,所以,.所以,所以.【点睛】本小题主要考查同角三角函数关系、三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想等.19、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】

(1)由已知,根据递推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基础之上解不等式可得实数的取值范围.【详解】(1)由已知,根据递推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,当n≥2时,an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2时,an=11+2×(1﹣()n﹣1),又a1=1也满足上式,故an=3﹣2×()n﹣1.(2)由1≤man≤5,得1≤man=m(3﹣2()n﹣1)≤5.因为3﹣2()n﹣1>0,所以,当n为奇数时,3﹣2()n﹣1∈[1,3);当n为偶数时,3﹣2()n﹣1∈(3,4],所以3﹣2()n﹣1最大值为4,最小值为1.对于任意的正整数n都有成立,所以1≤m.即所求实数m的取值范围是{m|1≤m}.【点睛】本题主要考查数列的递推公式知识和不等式的相关知识,式子繁琐,易错,属于中档题.20、(1);(2);(3).【解析】

(1)根据正弦函数的对称性,可得函数的解析式,再由函数图象的平移变换法则,可得函数的解析式;(2)将不等式进行转化,得到函数在[0,t]上为增函数,结合函数的单调性进行求解即可;(3)求出的解析式,结合交点个数转化为周期关系进行求解即可.【详解】(1)因为函数,其图象的一个对称中心是,所以有,的图象向左平移个单位长度后得到函数的图象.所以;(2)由,构造新函数为,由题意可知:任意,当时,都有,说明函数在上是单调递增函数,而的单调递增区间为:,而,所以单调递增区间为:,因此实数的最大值为:;(3),其最小正周期,而区间的长度为,直线的交点个数不少于6个且不多于10个,则,且,解得:.【点睛】本题考查了正弦型函数的对称性和图象变换,考查了正弦型函数的单调性,考查了已知两函数图象的交点个数求参数问题,考查了数学运算能力.21、(1)见解析;(2);(3)存在,为中点.【解析】

(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论