版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省浏阳一中、株洲二中等湘东五校2025届高一下数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,,若在区间上是单调函数,,则的值为()A. B.2 C.或 D.或22.在中,,则是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形3.函数图像的一条对称轴方程为()A. B. C. D.4.已知两点,,则()A. B. C. D.5.下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则6.为了得到函数的图象,可以将函数的图象()A.向左平移 B.向右平移C.向左平移 D.向右平移7.执行如图所示的程序,已知的初始值为,则输出的的值是()A. B. C. D.8.圆的半径是,则的圆心角与圆弧围成的扇形面积是()A. B. C. D.9.已知,则的值等于()A. B. C. D.10.某几何体的三视图如图所示,则它的体积是()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,与的夹角为钝角,则的取值范围是_____;12.数列中,为的前项和,若,则____.13.在等差数列中,,,则公差______.14.等差数列,的前项和分别为,,且,则______.15.数列中,已知,50为第________项.16.在中,分别是角的对边,已知成等比数列,且,则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期;(2)将函数的图象向右平移个单位得到函数的图象,若,求的值域.18.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利分别为和,可能的最大亏损率分别为和.投资人计划投资金额不超过亿元,要求确保可能的资金亏损不超过亿元,问投资人对甲、乙两个项目各投资多少亿元,才能使可能的盈利最大?19.等差数列中,.(1)求数列的通项公式;(2)设,求数列的前n项和.20.已知关于直线对称,且圆心在轴上.(1)求的标准方程;(2)已知动点在直线上,过点引的两条切线、,切点分别为.①记四边形的面积为,求的最小值;②证明直线恒过定点.21.设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为,,,乙协会编号为,丙协会编号分别为,,若从这6名运动员中随机抽取2名参加双打比赛.(1)用所给编号列出所有可能抽取的结果;(2)求丙协会至少有一名运动员参加双打比赛的概率;(3)求参加双打比赛的两名运动员来自同一协会的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先根据单调性得到的范围,然后根据得到的对称轴和对称中心,考虑对称轴和对称中心是否在同一周期内,分析得到的值.【详解】因为,则;又因为,则由可知得一条对称轴为,又因为在区间上是单调函数,则由可知的一个对称中心为;若与是同一周期内相邻的对称轴和对称中心,则,则,所以;若与不是同一周期内相邻的对称轴和对称中心,则,则,所以.【点睛】对称轴和对称中心的判断:对称轴:,则图象关于对称;对称中心:,则图象关于成中心对称.2、D【解析】
先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【详解】因为,所以所以因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D【点睛】要判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:①角化边:把已知条件转化为只含边的关系,通过因式分解、配方等得到边的对应关系,从而判断三角形形状,②边化角:把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断三角形的形状.3、B【解析】
对称轴为【详解】依题意有解得故选B【点睛】本题考查的对称轴,属于基础题。4、C【解析】
直接利用两点间距离公式求解即可.【详解】因为两点,,则,故选.【点睛】本题主要考查向量的模,两点间距离公式的应用.5、C【解析】试题分析:选项A中,条件应为;选项B中当时不成立;选项D中,结论应为;C正确.考点:不等式的性质.6、B【解析】
利用的图象变换规律,即可求解,得出结论.【详解】由题意,函数,,又由,故把函数的图象上所有的点,向右平移个单位长度,可得的图象,故选:B.【点睛】本题主要考查了三角函数的图象变换规律,其中解答中熟记三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解析】
第一次运行:,满足循环条件因而继续循环;接下来继续写出第二次、第三次运算,直至,然后输出的值.【详解】初始值第一次运行:,满足循环条件因而继续循环;第二次运行:,满足循环条件因而继续循环;第三次运行:,不满足循环条件因而继续循环,跳出循环;此时.故选:C【点睛】本题是一道关于循环结构的问题,需要借助循环结构的相关知识进行解答,需掌握循环结构的两种形式,属于基础题.8、C【解析】
先将化为弧度数,再利用扇形面积计算公式即可得出.【详解】所以扇形的面积为:故选:C【点睛】题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.9、B【解析】.10、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算.由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
与的夹角为钝角,即数量积小于0.【详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【点睛】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.12、【解析】
由,结合等比数列的定义可知数列是以为首项,为公比的等比数列,代入等比数列的求和公式即可求解.【详解】因为,所以,又因为所以数列是以为首项,为公比的等比数列,所以由等比数列的求和公式得,解得【点睛】本题考查利用等比数列的定义求通项公式以及等比数列的求和公式,属于简单题.13、3【解析】
根据等差数列公差性质列式得结果.【详解】因为,,所以.【点睛】本题考查等差数列公差,考查基本分析求解能力,属基础题.14、【解析】
取,代入计算得到答案.【详解】,当时故答案为【点睛】本题考查了前项和和通项的关系,取是解题的关键.15、4【解析】
方程变为,设,解关于的二次方程可求得。【详解】,则,即设,则,有或取得,,所以是第4项。【点睛】发现,原方程可通过换元,变为关于的一个二次方程。对于指数结构,,等,都可以通过换元变为二次形式研究。16、【解析】
利用成等比数列得到,再利用余弦定理可得,而根据正弦定理和成等比数列有,从而得到所求之值.【详解】∵成等比数列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因为,所以,故.故答案为.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)将已知函数转化为,结合周期的公式,即可求解;(2)利用三角函数的图象变换,求得,再结合三角函数的性质,即求解.【详解】(1)因为,所以的最小正周期;(2)若将函数的图象向右平移个单位,得到函数的图象对应的解析式为,由知,,所以当即时,取得最小值;当即时,取得最大值1,因此的值域为.【点睛】本题主要考查了三角函数的恒等变换,以及正项型函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.18、投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【解析】
设投资人分别用亿元、亿元投资甲、乙两个项目,根据题意列出变量、所满足的约束条件和线性目标函数,利用平移直线的方法得出线性目标函数取得最大值时的最优解,并将最优解代入线性目标函数可得出盈利的最大值,从而解答该问题.【详解】设投资人分别用亿元、亿元投资甲、乙两个项目,由题意知,即,目标函数为.上述不等式组表示平面区域如图所示,阴影部分(含边界)即可行域.由图可知,当直线经过点时,该直线在轴上截距最大,此时取得最大值,解方程组,得,所以,点的坐标为.当,时,取得最大值,此时,(亿元).答:投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【点睛】本题考查线性规划的实际应用,考查利用数学知识解决实际问题,解题的关键就是列出变量所满足的约束条件,并利用数形结合思想求解,考查分析问题和解决问题的能力,属于中等题.19、(1);(2).【解析】
(1)根据等差数列公式得到方程组,计算得到答案.(2)先求出,再利用裂项求和求得.【详解】(1)等差数列中,,解得:(2)数列的前n项和.【点睛】本题考查了数列的通项公式,裂项求和,意在考查学生对于数列公式的灵活运用及计算能力.20、(1)(2)①②证明见解析【解析】
(1)根据圆的一般式,可得圆心坐标,将圆心坐标代入直线方程,结合圆心在轴上,即可求得圆C的标准方程.(2)①根据切线性质及切线长定理,表示出的长,根据圆的性质可知当最小时,即可求得面积的最小值;②设出M点坐标,根据两条切线可知M、A、C、B四点共圆,可得圆心坐标及半径,进而求得的方程,根据两个圆公共弦所在直线方程求法即可得直线方程,进而求得过的定点坐标.【详解】(1)由题意知,圆心在直线上,即,又因为圆心在轴上,所以,由以上两式得:,,所以.故的标准方程为.(2)①如图,的圆心为,半径,因为、是的两条切线,所以,,故又因为,根据平面几何知识,要使最小,只要最小即可.易知,当点坐标为时,.此时.②设点的坐标为,因为,所以、、、四点共圆.其圆心为线段的中点,,设所在的圆为,所以的方程为:,化简得:,因为是和的公共弦,所以,两式相减得,故方程为:,当时,,所以直线恒过定点.【点睛】本题考查了圆的一般方程与标准方程的应用,圆中三角形面积问题的应用,直线过定点问题,综合性强,属于难题.21、(1)15种;(2);(3)【解析】
(1)从这6名运动员中随机抽取2名参加双打比赛,利用列举法即可得到所有可能的结果.(2利用列举法得到“丙协会至少有一名运动员参加双打比赛”的基本事件的个数,利用古典概型,即可求解;(3)由两名运动员来自同一协会有,,,,共4种,利用古典概型,即可求解.【详解】(1)由题意,从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为,,,,,,,,,,,,,,,共15种.(2)因为丙协会至少有一名
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同格式模板
- 合同保管协议书样本
- 2024简易保姆用工合同样本
- 2024合同审查法律意见书格式
- 2024常用运输合同范本
- 商品房合同内容补充协议
- 深圳市劳动合同样本2024年
- 2024前期物业服务合同范本
- 2024年购销牛羊的合同
- 建筑项目合同编写要点
- 检测公司检验检测工作控制程序
- 社工机构项目管理制度
- 充电桩整体解决方案PPT幻灯片(PPT 27页)
- 物业服务集团全员品质督导策划方案
- 建筑设计基础(ppt)课件
- 半导体芯片项目商业计划书范文参考
- 邯郸市政府采购办事指南
- 城市初期雨水污染治理
- 在护林员培训班上的讲话护林员会议讲话稿.doc
- 材料科学基础-第7章-三元相图
- (完整word版)高频变压器的设计
评论
0/150
提交评论