福建省八县一中2025届高一下数学期末教学质量检测模拟试题含解析_第1页
福建省八县一中2025届高一下数学期末教学质量检测模拟试题含解析_第2页
福建省八县一中2025届高一下数学期末教学质量检测模拟试题含解析_第3页
福建省八县一中2025届高一下数学期末教学质量检测模拟试题含解析_第4页
福建省八县一中2025届高一下数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省八县一中2025届高一下数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.2.在正方体中,异面直线与所成角的大小为()A. B. C. D.3.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C.2 D.34.经过点,斜率为2的直线在y轴上的截距为()A. B. C.3 D.55.下列四个函数中,既是上的增函数,又是以为周期的偶函数的是()A. B. C. D.6.在中,内角的对边分别为,若,那么()A. B. C. D.7.已知向量,则与的夹角为()A. B. C. D.8.下列赋值语句正确的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=9.在空间四边形中,,,,分别是,的中点,,则异面直线与所成角的大小为()A. B. C. D.10.设,则下列不等式恒成立的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等腰直角中,,CD是AB边上的高,E是AC边的中点,现将沿CD翻折成直二面角,则异面直线DE与AB所成角的大小为________.12.为了研究问题方便,有时将余弦定理写成:,利用这个结构解决如下问题:若三个正实数,满足,,,则_______.13.已知,,若,则实数的值为__________.14.函数的最小正周期是______.15.如图,已知扇形和,为的中点.若扇形的面积为1,则扇形的面积为______.16.若角是第四象限角,则角的终边在_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)把表示为的形式,并写出函数的最小正周期、值域;(2)求函数的单调递增区间:(3)定义:对于任意实数、,设,(常数),若对于任意,总存在,使得恒成立,求实数的取值范围.18.已知函数.(1)求在区间上的单调递增区间;(2)求在的值域.19.已知向量.(1)当时,求的值;(2)设函数,当时,求的值域.20.设向量,,.(1)若,求实数的值;(2)求在方向上的投影.21.(1)己知直线,求与直线l平行且到直线l距离为2的直线方程;(2)若关于x的不等式的解集是的子集,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.2、C【解析】

连接、,可证四边形为平行四边形,得,得(或补角)就是异面直线与所成角,由正方体的性质即可得到答案.【详解】连接、,如下图:在正方体中,且;四边形为平行四边形,则;(或补角)就是异面直线与所成角;又在正方体中,,为等边三角形,,即异面直线与所成角的大小为;故答案选C【点睛】本题考查正方体中异面直线所成角的大小,属于基础题.3、D【解析】

由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!4、B【解析】

写出直线的点斜式方程,再将点斜式方程化为斜截式方程即可得解.【详解】因为直线经过点,且斜率为2,故点斜式方程为:,化简得:,故直线在y轴上的截距为.故选:B.【点睛】本题考查直线的方程,解题关键是应熟知直线的五种方程形式,属于基础题,5、C【解析】

本题首先可确定四个选项中的函数的周期性以及在区间上的单调性、奇偶性,然后根据题意即可得出结果.【详解】A项:函数周期为,在上是增函数,奇函数;B项:函数周期为,在上是减函数,偶函数;C项:函数周期为,在上是增函数,偶函数;D项:函数周期为,在上是减函数,偶函数;综上所述,故选C.【点睛】本题考查三角函数的周期性以及单调性,能否熟练的掌握正弦函数以及余弦函数的图像性质是解决本题的关键,考查推理能力,是简单题.6、B【解析】

化简,再利用余弦定理求解即可.【详解】.故.又,故.故选:B【点睛】本题主要考查了余弦定理求解三角形的问题,属于基础题.7、D【解析】

根据题意,由向量数量积的计算公式可得cosθ的值,据此分析可得答案.【详解】设与的夹角为θ,由、的坐标可得||=5,||=3,•5×0+5×(﹣3)=﹣15,故,所以.故选D【点睛】本题考查向量数量积的坐标计算,涉及向量夹角的计算,属于基础题.8、B【解析】在程序语句中乘方要用“^”表示,所以A项不正确;乘号“*”不能省略,所以C项不正确;D项中应用SQR(x)表示,所以D项不正确;B选项是将变量A的相反数赋给变量A,则B项正确.选B.9、D【解析】

平移两条异面直线到相交,根据余弦定理求解.【详解】如图所示:设的中点为,连接,所以,则是所成的角或其补角,又根据余弦定理得:,所以,异面直线与所成角的为,故选D.【点睛】本题考查异面直线所成的角和余弦定理.注意异面直线所成的角的取值范围是.10、C【解析】

利用不等式的性质,合理推理,即可求解,得到答案.【详解】因为,所以,所以A项不正确;因为,所以,,则,所以B不正确;因为,则,所以,又因为,则,所以等号不成立,所以C正确;由,所以,所以D错误.【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的性质,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

取的中点,连接,则与所成角即为与所成角,根据已知可得,,可以判断三角形为等边三角形,进而求出异面直线直线DE与AB所成角.【详解】取的中点,连接,则,直线DE与AB所成角即为与所成角,,,,,,即三角形为等边三角形,异面直线DE与AB所成角的大小为.故答案为:【点睛】本题考查立体几何中的翻折问题,考查了异面直线所成的角,考查了学生的空间想象能力,属于基础题.12、【解析】

设的角、、的对边分别为、、,在内取点,使得,设,,,利用余弦定理得出的三边长,由此计算出的面积,再利用可得出的值.【详解】设的角、、的对边分别为、、,在内取点,使得,设,,,由余弦定理得,,同理可得,,,则,的面积为,另一方面,解得,故答案为.【点睛】本题考查余弦定理的应用,问题的关键在于将题中的等式转化为余弦定理,并转化为三角形的面积来进行计算,考查化归与转化思想以及数形结合思想,属于中等题.13、【解析】

利用共线向量等价条件列等式求出实数的值.【详解】,,且,,因此,,故答案为.【点睛】本题考查利用共线向量来求参数,解题时要充分利用共线向量坐标表示列等式求解,考查计算能力,属于基础题.14、【解析】

由二倍角的余弦函数公式化简解析式可得,根据三角函数的周期性及其求法即可得解.【详解】.由周期公式可得:.故答案为【点睛】本题主要考查了二倍角的余弦函数公式的应用,考查了三角函数的周期性及其求法,属于基本知识的考查.15、1【解析】

设,在扇形中,利用扇形的面积公式可求,根据已知,在扇形中,利用扇形的面积公式即可计算得解.【详解】解:设,扇形的面积为1,即:,解得:,为的中点,,在扇形中,.故答案为:1.【点睛】本题主要考查了扇形的面积公式的应用,考查了数形结合思想和转化思想,属于基础题.16、第二或第四象限【解析】

根据角是第四象限角,写出角的范围,即可求出角的终边所在位置.【详解】因为角是第四象限角,所以,即有,当为偶数时,角的终边在第四象限;当为奇数时,角的终边在第二象限,故角的终边在第二或第四象限.【点睛】本题主要考查象限角的集合的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)(3)【解析】

(1)结合二倍角正弦公式和辅助角公式即可化简;(2)结合(1)中所求表达式,正弦型函数单调增区间的通式即可求解;(3)根据题意可得,,求出的值域,列出关于的不等式组,即可求解【详解】(1),,值域为;(2)令,解得,所以函数的单调递增区间为,;(3)若对于任意,总存在,使得恒成立,则,,当,即时,,当,即时,,故,所以,解得,所以实数的取值范围是【点睛】本题考查三角函数的化简和三角函数的性质应用,函数恒成立问题的转化,属于中档题18、(1)和.(2)【解析】

(1)利用辅助角公式可将函数化简为;令可求出的单调递增区间,截取在上的部分即可得到所求的单调递增区间;(2)利用的范围可求得的范围,对应正弦函数的图象可求得的范围,进而得到函数的值域.【详解】(1)令,解得:令,可知在上单调递增令,可知在上单调递增在上的单调递增区间为:和(2)当时,即在的值域为:【点睛】本题考查正弦型函数单调区间和值域的求解问题;解决此类问题的常用方法是采用整体对应的方式,将整体对应正弦函数的单调区间或整体所处的范围,从而结合正弦函数的知识可求得结果.19、(1)-7,(2)【解析】试题分析:(1)由向量共线得到等量关系,求出角的正切值,再利用两角差正切公式求解:(2)先根据向量数量积,利用二倍角公式及配角公式得到三角函数关系式,再从角出发研究基本三角函数范围:试题解析:(1),3分6分(2)8分11分,的值域为14分考点:向量平行坐标表示,三角函数性质20、(1);(2).【解析】

(1)计算出的坐标,然后利用共线向量的坐标表示列出等式求出实数的值;(2)求出和,从而可得出在方向上的投影为.【详解】(1),,,,,,解得;(2),,在方向上的投影.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标运算以及投影的计算,在解题时要弄清楚这些知识点的定义以及坐标运算律,考查计算能力,属于中等题.21、(1)或;(2)【解析】

(1)根据两直线平行,设所求直线为,利用两平行线间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论