版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大兴安岭2025届高一数学第二学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若展开式中的系数为-20,则等于()A.-1 B. C.-2 D.2.把函数的图象经过变化而得到的图象,这个变化是()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.已知点是所在平面内的一定点,是平面内一动点,若,则点的轨迹一定经过的()A.重心 B.垂心 C.内心 D.外心4.已知三条相交于一点的线段两两垂直且在同一平面内,在平面外、平面于,则垂足是的()A.内心 B.外心 C.重心 D.垂心5.下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则6.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A. B.C. D.7.如图,这是某校高一年级一名学生七次月考数学成绩(满分100分)的茎叶图去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.68.直线l:的倾斜角为()A. B. C. D.9.=()A. B. C. D.10.下列命题中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列中,则此数列的前项和_________.12.若当时,不等式恒成立,则实数a的取值范围是_____.13.函数的最大值为______.14.如图,在等腰直角三角形ABC中,,,以AB为直径在外作半圆O,P是半圆弧AB上的动点,点Q在斜边BC上,若,则的取值范围是________.15.已知三棱锥,平面,,,,则三棱锥的侧面积__________.16.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=5三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知四棱锥,侧面是正三角形,底面为边长2的菱形,,.(1)设平面平面,求证:;(2)求多面体的体积;(3)求二面角的余弦值.18.已知不共线的向量,,,.(1)求与的夹角的余弦值;(2)求.19.已知数列的前项和为,且,求数列的通项公式.20.在中,角的对边分别是,且满足.(1)求角的大小;(2)若,边上的中线的长为,求的面积.21.已知函数.求:(1)函数的最大值、最小值及最小正周期;(2)函数的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由,可得将选项中的数值代入验证可得,符合题意,故选A.2、B【解析】
试题分析:,与比较可知:只需将向右平移个单位即可考点:三角函数化简与平移3、A【解析】
设D是BC的中点,由,,知,所以点P的轨迹是射线AD,故点P的轨迹一定经过△ABC的重心.【详解】如图,设D是BC的中点,∵,,∴,即∴点P的轨迹是射线AD,∵AD是△ABC中BC边上的中线,∴点P的轨迹一定经过△ABC的重心.故选:A.【点睛】本题考查三角形五心的应用,是基础题.解题时要认真审题,仔细解答.4、D【解析】
根据题意,结合线线垂直推证线面垂直,以及根据线面垂直推证线线垂直,即可求解。【详解】连接BH,延长BH与AC相交于E,连接AH,延长AH交BC于D,作图如下:因为,故平面PBC,又平面PBC,故;因为平面ABC,平面ABC,故;又平面PAH,平面PAH故平面PAH,又平面PAH,故,即;同理可得:,又BE与AD交于点H,故H点为的垂心.故选:D.【点睛】本题考查线线垂直与线面垂直之间的相互转化,属综合中档题.5、C【解析】试题分析:选项A中,条件应为;选项B中当时不成立;选项D中,结论应为;C正确.考点:不等式的性质.6、A【解析】由于频率分布直方图的组距为5,去掉C、D,又[0,5),[5,10)两组各一人,去掉B,应选A.7、D【解析】
去掉一个最高分和一个最低分后,所剩数据为82,84,84,86,89,由此能求出所剩数据的平均数和方差.【详解】平均数,方差,选D.【点睛】本题考查所剩数据的平均数和方差的求法,考查茎叶图、平均数、方差的性质等基础知识,考查运算求解能力,是基础题.8、C【解析】
由直线的斜率,又,再求解即可.【详解】解:由直线l:,则直线的斜率,又,所以,即直线l:的倾斜角为,故选:C.【点睛】本题考查了直线倾斜角的求法,属基础题.9、A【解析】
试题分析:由诱导公式,故选A.考点:诱导公式.10、D【解析】
根据向量的加减法的几何意义以及向量数乘的定义即可判断.【详解】,,,,故选D.【点睛】本题主要考查向量的加减法的几何意义以及向量数乘的定义的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、180【解析】由,,可知.12、【解析】
用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.13、【解析】
设,,,则,,可得,再根据正弦函数的定义域和值域,求得函数的最值.【详解】解:函数,设,,则,,,,故当,即时,函数,故故答案为:;【点睛】本题主要考查求函数的值域,正弦函数的定义域和值域,体现了转化的数学思想,属于基础题.14、【解析】
建立直角坐标系,得出的坐标,利用数量积的坐标表示得出,结合正弦函数的单调性得出的取值范围.【详解】取中点为,建立如下图所示的直角坐标系则,设,,则,则设点,则,则当,即时,取最大值当,即时,取最小值则的取值范围是故答案为:【点睛】本题主要考查了利用数量积求参数以及求正弦型函数的最值,属于较难题.15、【解析】
根据题意将三棱锥放入对应长方体中,计算各个面的面积相加得到答案.【详解】三棱锥,平面,,,画出图像:易知:每个面都是直角三角形.【点睛】本题考查了三棱锥的侧面积,将三棱锥放入对应的长方体是解题的关键.16、1【解析】
根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】
(1)由,证得平面,再由线面平行的性质,即可得到;(2)取中点,连结,推得,,得到平面,再由多面体的体积,结合体积公式,即可求解;(3)由,设的中点为,连结,推得,从而得到就是二面角的平面角,由此可求得二面角的余弦值.【详解】证明:(1)因为平面平面,所以平面,又平面,平面平面,所以;(2)取中点,连结,由得,同理,又因为,所以平面,在中,,所以,所以多面体的体积;(3)由题意知,底面为边长2的菱形,,所以,又,所以,设的中点为,连结,由侧面是正三角形知,,所以,因此就是二面角的平面角,在中,,,由余弦定理得,二面角的余弦值为.【点睛】本题主要考查了线面位置关系的判定,多面体的体积的计算,以及二面角的求解,其中解答中熟记线面位置关系的判定与性质,以及而面积的平面角的定义,准确计算是解答的关键,着重考查了推理与论证能力,属于中档试题.18、(1);(2).【解析】
(1)先计算出,再代入公式,求出余弦值;(2)直接利用公式计算求值.【详解】(1)设的夹角为,∵,∴,又,可得,∴.(2).【点睛】本题考查利用数量积求向量的夹角、模的计算,考查基本运算求解能力.19、【解析】
当时,,当时,,即可得出.【详解】∵已知数列的前项和为,且,当时,,当时,,检验:当时,不符合上式,【点睛】本题考查了数列递推关系、数列的通项公式,考查了推理能力与计算能力,属于基础题.20、(1)(2)【解析】
(1)先后利用正弦定理余弦定理化简得到,即得B的大小;(2)设,则,所以,利用余弦定理求出m的值,再求的面积.【详解】解:(1)因为,由正弦定理,得,即.由余弦定理,得.因为,所以.(2)因为,所以.设,则,所以.在中,由余弦定理得,得,即,整理得,解得.所以.【点睛】本题主要考查正弦定理余弦定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木制家具生产合同
- 2024聘请常年法律顾问合同协议书
- 土地租赁合同税务问题
- 股权扩股协议书格式
- 建筑设计培训就业协议书
- 3.1.1 勾股定理 同步课件
- 七年级地理上册-4.2-世界的语言和宗教同课异构教案1-新人教版
- 2024版发起人协议书范例
- 《未来的建筑》示范公开课教学课件【小学三年级美术下册】
- 2024年多应用场景童鞋购销合同
- 生物质能发电技术应用中存在的问题及优化方案
- GA 1809-2022城市供水系统反恐怖防范要求
- 幼儿园绘本故事:《老虎拔牙》 课件
- 2021年上半年《系统集成项目管理工程师》真题
- 一个冬天的童话 遇罗锦
- GB/T 706-2008热轧型钢
- 实验六 双子叶植物茎的初生结构和单子叶植物茎的结构
- GB/T 25032-2010生活垃圾焚烧炉渣集料
- GB/T 13610-2020天然气的组成分析气相色谱法
- 《彩虹》教案 省赛一等奖
- 2023年湖南建筑工程初中级职称考试基础知识
评论
0/150
提交评论