惠州市实验中学2025届高一下数学期末经典模拟试题含解析_第1页
惠州市实验中学2025届高一下数学期末经典模拟试题含解析_第2页
惠州市实验中学2025届高一下数学期末经典模拟试题含解析_第3页
惠州市实验中学2025届高一下数学期末经典模拟试题含解析_第4页
惠州市实验中学2025届高一下数学期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

惠州市实验中学2025届高一下数学期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc22.若一个数列的前三项依次为6,18,54,则此数列的一个通项公式为()A. B. C. D.3.下列说法正确的是()A.锐角是第一象限的角,所以第一象限的角都是锐角;B.如果向量,则;C.在中,记,,则向量与可以作为平面ABC内的一组基底;D.若,都是单位向量,则.4.若函数f(x)=loga(x2–ax+2)在区间(0,1]上单调递减,则实数a的取值范围是()A.[2,3) B.(2,3) C.[2,+∞) D.(2,+∞)5.当点到直线的距离最大时,m的值为()A.3 B.0 C. D.16.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10107.一个不透明袋中装有大小、质地完成相同的四个球,四个球上分别标有数字2,3,4,6,现从中随机选取三个球,则所选三个球上的数字能构成等差数列(如:、、成等差数列,满足)的概率是()A. B. C. D.8.用数学归纳法证明不等式的过程中,由递推到时,不等式左边()A.增加了一项B.增加了两项,C.增加了A中的一项,但又减少了另一项D.增加了B中的两项,但又减少了另一项9.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为10.设m,n是两条不同的直线,α A.若m⊥β,n⊥β , n⊥α,则m⊥αC.若m⊥n, n∥α,则m⊥α D.若m⊥n二、填空题:本大题共6小题,每小题5分,共30分。11.如图,直三棱柱中,,,,外接球的球心为О,点E是侧棱上的一个动点.有下列判断:①直线AC与直线是异面直线;②一定不垂直;③三棱锥的体积为定值;④的最小值为⑤平面与平面所成角为其中正确的序号为_______12.已知数列满足,,,记数列的前项和为,则________.13.已知数列的前n项和,则________.14.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于.15.设Sn为数列{an}的前n项和,若Sn=(-1)nan-,n∈N,则a3=________.16.在中,角所对的边分别为,若,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于的不等式.(1)若不等式的解集为,求;(2)当时,解此不等式.18.已知圆,过点的直线与圆相交于不同的两点,.(1)若,求直线的方程.(2)判断是否为定值.若是,求出这个定值;若不是,请说明理由.19.在中,角的对边分别为,且.(1)求角A的大小;(2)若,求的面积.20.已知数列满足:.(1)若为等差数列,求的通项公式;(2)若单调递增,求的取值范围;21.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82848589798091897974乙班:90768681848786828583(1)求两个样本的平均数;(2)求两个样本的方差和标准差;(3)试分析比较两个班的学习情况.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.2、C【解析】

,,,可以归纳出数列的通项公式.【详解】依题意,,,,所以此数列的一个通项公式为,故选:C.【点睛】本题考查了数列的通项公式,主要考查归纳法得到数列的通项公式,属于基础题.3、C【解析】

可举的角在第一象限,但不是锐角,可判断A;考虑两向量是否为零向量,可判断B;由不共线,推得与不共线,可判断C;考虑两向量的方向可判断D,得到答案.【详解】对于A,锐角是第一象限的角,但第一象限的角不一定为锐角,比如的角在第一象限,但不是锐角,故A错误;对于B,如果两个非零向量满足,则,若存在零向量,结论不一定成立,故B错误;对于C,在中,记,可得与不共线,则向量与可以作为平面内的一组基底,故C正确;对于D,若都是单位向量,且方向相同时,;若方向不相同,结论不成立,所以D错误.故选C.【点睛】本题主要考查了命题的真假判断,主要是向量共线和垂直的条件,着重考查了判断能力和分析能力,属于基础题.4、A【解析】

函数为函数与的复合函数,复合函数的单调性是同则增,异则减,讨论,,结合二次函数的单调性,同时还要保证真数恒大于零,由二次函数的图象和性质列不等式即可求得的范围.【详解】∵函数在区间上为单调递减函数,∴时,在上为单调递减函数,且在上恒成立,∴需在上的最小值,且对称轴,∴,当时,在上为单调递增函数,不成立,综上可得的范围是,故选:A.【点睛】本题考查了对数函数的图象和性质,二次函数图象和性质,复合函数的定义域与单调性,不等式恒成立问题的解法,转化化归的思想方法,属于中档题.5、C【解析】

求得直线所过的定点,当和直线垂直时,距离取得最大值,根据斜率乘积等于列方程,由此求得的值.【详解】直线可化为,故直线过定点,当和直线垂直时,距离取得最大值,故,故选C.【点睛】本小题主要考查含有参数的直线过定点的问题,考查点到直线距离的最值问题,属于基础题.6、D【解析】

由等差数列{an}中,S1=1,S【详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【点睛】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.7、B【解析】

用列举法写出所有基本事件,确定成等差数列含有的基本事件,计数后可得概率.【详解】任取3球,结果有234,236,246,346共4种,其中234,246是成等差数列的2个基本事件,∴所求概率为.故选:B.【点睛】本题考查古典概型,解题时可用列举法列出所有的基本事件.8、D【解析】

根据题意,分别写出和时,左边对应的式子,进而可得出结果.【详解】当时,左边,当时,左边,所以,由递推到时,不等式左边增加了,;减少了;故选:D【点睛】本题主要考查数学归纳法的应用,熟记数学归纳法,会求增量即可,属于基础题型.9、C【解析】

由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【点睛】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.10、A【解析】

依据立体几何有关定理及结论,逐个判断即可。【详解】A正确:利用“垂直于同一个平面的两条直线平行”及“两条直线有一条垂直于一个平面,则另一条也垂直于该平面”,若m⊥β且n⊥β ,则m//n,又n⊥α,所以m⊥αB错误:若m∥β, , β⊥α,则C错误:若m⊥n, n∥α,则m可能垂直于平面α,也可能平行于平面α,还可能在平面D错误:若m⊥n , n⊥β , β⊥α,则【点睛】本题主要考查立体几何中的定理和结论,意在考查学生几何定理掌握熟练程度。二、填空题:本大题共6小题,每小题5分,共30分。11、①③④⑤【解析】

由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设,列出关于的函数关系式,结合其几何意义,求出最小值判断④;由面面成角的定义判断⑤【详解】对于①,因为直线经过平面内的点,而直线在平面内,且不过点,所以直线与直线是异面直线,故①正确;对于②,当点所在的位置满足时,又,,平面,所以平面,又平面,所以,故②错误;对于③,由题意知,直三棱柱的外接球的球心是与的交点,则的面积为定值,由平面,所以点到平面的距离为定值,所以三棱锥的体积为定值,故③正确;对于④,设,则,所以,由其几何意义,即直角坐标平面内动点与两定点,距离和的最小值知,其最小值为,故④正确;对于⑤,由直棱柱可知,,,则即为平面与平面所成角,因为,,所以,故⑤正确;综上,正确的有①③④⑤,故答案为:①③④⑤【点睛】本题考查异面直线的判定,考查面面成角,考查线线垂直的判定,考查转化思想12、7500【解析】

讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.13、【解析】

先利用求出,在利用裂项求和即可.【详解】解:当时,,当时,,综上,,,,故答案为:.【点睛】本题考查和的关系求通项公式,以及裂项求和,是基础题.14、【解析】试题分析:由题意得,不妨设棱长为,如图,在底面内的射影为的中心,故,由勾股定理得,过作平面,则为与底面所成角,且,作于中点,所以,所以,所以与底面所成角的正弦值为.考点:直线与平面所成的角.15、-【解析】当n=3时,S3=a1+a2+a3=-a3-,则a1+a2+2a3=-,当n=4时,S4=a1+a2+a3+a4=a4-,两式相减得a3=-.16、【解析】根据正弦定理得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2(2)时,,时,,时,不等式的解集为空集,时,,时,.【解析】

(1)根据不等式的解集和韦达定理,可列出关于a的方程组,解得a;(2)不等式化为,讨论a的取值,从而求得不等式的解集。【详解】(1)由题得,,解集为,则有,解得;(2)由题,:当时,不等式化为,解得;当时,不等式等价于,若,解得;若,解得,若,解得;当时,不等式等价于,解得或.综上,时,不等式的解集为,时,不等式的解集为,时,不等式的解集为空集,时,不等式的解集为,时,不等式的解集为.【点睛】本题考查一元二次不等式的解法与应用,以及通过讨论参数取值求不等式的解集,有一定的难度。18、(1)或.(2)是,定值.【解析】

(1)根据题意设出,再联立直线方程和圆的方程,得到,,然后由列式,再将的值代入求解,即可求出;(2)先根据特殊情况,当直线与轴垂直时,求出,再说明当直线与轴不垂直时,是否成立,即可判断.【详解】(1)由已知得不与轴垂直,不妨设,,.联立消去得,则有,又,,,解得或.所以,直线的方程为或.(2)当直线与轴垂直时(斜率不存在),,的坐标分别为,,此时.当不与轴垂直时,又由(1),,且,所以.综上,为定值.【点睛】本题主要考查直线与圆的位置关系的应用,韦达定理的应用,数量积的坐标表示,以及和圆有关的定值问题的解法的应用,意在考查学生的数学运算能力,属于中档题.19、(1)A=;(2).【解析】

(1)由正弦定理将角关系转化为变关系,再利用余弦定理得到答案.(2)利用余弦定理得到,代入面积公式得到答案.【详解】解:(1)因为所以由正弦定理可得整理可得左右同除以得到,即A=(2)由余弦定理,得,故,所以三角形的面积.【点睛】本题考查了是正弦定理,余弦定理,面积公式,意在考查学生的计算能力.20、(1)(2)【解析】

(1)设出的通项公式,根据计算出对应的首项和公差,即可求解出通项公式;(2)根据条件得到,得到的奇数项成等差数列,的偶数项也成等差数列,根据单调递增列出关于的不等式,求解出范围即可.【详解】(1)设,所以,所以,所以,所以;(2)因为,所以,所以,又因为,所以,当为奇数时,,当为偶数时,,因为单调递增,所以,所以,所以.【点睛】本题考查等差数列的基本量求解以及根据数列的单调性求解参数范围,难度一般.(1)已知数列的类型和数列的递推公式求解数列通项公式时,可采用设出数列通项公式的形式,然后根据递推关系求解出数列通项公式中的基本量;(2)数列的单调性可通过与的大小关系来判断.21、(1),;(2),,;(3)乙班的总体学习情况比甲班好【解析】试题分析:每组样本数据有10个,求样本的平均数利用平均数公式,10个数的平均数等于这10个数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论