版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州地区七校联考2025届高一下数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量、满足,且,则为()A. B.6 C.3 D.2.将一个总体分为甲、乙、丙三层,其个体数之比为,若用分层抽样的方法抽取容量为200的样本,则应从丙层中抽取的个体数为()A.20 B.40 C.60 D.1003.如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是()A.该超市这五个月中,利润随营业额的增长在增长B.该超市这五个月中,利润基本保持不变C.该超市这五个月中,三月份的利润最高D.该超市这五个月中的营业额和支出呈正相关4.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3605.如图所示,在正四棱锥中,分别是,,的中点,动点在线段上运动时,下列结论不恒成立的是().A.与异面 B.面 C. D.6.已知,若,则()A. B. C. D.7.函数f(x)=log3(2﹣x)的定义域是()A.[2,+∞) B.(2,+∞) C.(﹣∞,2) D.(﹣∞,2]8.记复数的虚部为,已知满足,则为()A. B. C.2 D.9.某学校高一、高二年级共有1800人,现按照分层抽样的方法,抽取90人作为样本进行某项调查.若样本中高一年级学生有42人,则该校高一年级学生共有()A.420人 B.480人 C.840人 D.960人10.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则的取值范围是____12.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的中位数为,乙加工零件个数的平均数为,则______.13.已知方程的四个根组成一个首项为的等差数列,则_____.14.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.4954435482173793232887352056438426349164572455068877047447672176335025839212067615.已知圆及点,若满足:存在圆C上的两点P和Q,使得,则实数m的取值范围是________.16.若函数的反函数的图象过点,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某销售公司拟招聘一名产品推销员,有如下两种工资方案:方案一:每月底薪2000元,每销售一件产品提成15元;方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:月销售产品件数300400500600700次数24954把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.18.已知数列满足.(1)求数列的通项公式;(2)若,为数列的前项和,求证:19.已知数列an的前n项和为Sn,a1(1)分别求数列an(2)若对任意的n∈N*,20.已知函数=的定义域为=的定义域为(其中为常数).(1)若,求及;(2)若,求实数的取值范围.21.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(1)求证:PB//平面EAC;(2)求证:AE⊥平面PCD;(3)当为何值时,PB⊥AC?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先由可得,即可求得,再对平方处理,进而求解【详解】因为,所以,则,所以,则,故选:A【点睛】本题考查向量的模,考查向量垂直的数量积表示,考查运算能力2、B【解析】
求出丙层所占的比例,然后求出丙层中抽取的个体数【详解】因为甲、乙、丙三层,其个体数之比为,所以丙层所占的比例为,所以应从丙层中抽取的个体数为,故本题选B.【点睛】本题考查了分层抽样中某一层抽取的个体数的问题,考查了数学运算能力.3、D【解析】
根据折线图,分析出超市五个月中利润的情况以及营业额和支出的相关性.【详解】对于A选项,五个月的利润依次为:,其中四月比三月是下降的,故A选项错误.对于B选项,五月的月份是一月和四月的两倍,说明利润有比较大的波动,故B选项错误.对于C选项,五个月的利润依次为:,所以五月的利润最高,故C选项错误.对于D选项,根据图像可知,超市这五个月中的营业额和支出呈正相关,故D选项正确.故选:D【点睛】本小题主要考查折线图的分析与理解,属于基础题.4、A【解析】
根据数得250粒内夹谷30粒,根据比例,即可求得结论。【详解】设批米内夹谷约为x石,则,解得:选A。【点睛】此题考查简单随机抽样,根据部分的比重计算整体值。5、D【解析】如图所示,连接AC、BD相交于点O,连接EM,EN.(1)由正四棱锥S−ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正确.(2)由异面直线的定义可知:EP与SD是异面直线,故A正确;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正确.(4)当P与M重合时,有∥,其他情况都是异面直线即D不正确.故选D点睛:本题抓住正四棱锥的特征,顶点在底面的投影为底面正方形的中心,即SO⊥底面ABCD,EP为动直线,所以要证EP∥面,可先证EP所在的平面平行于面SBD,要证⊥可先证AC垂直于EP所在的平面,所以化动为静的处理思想在立体中常用.6、C【解析】
由,得,则,则.【考点定位】7、C【解析】试题分析:利用对数函数的性质求解.解:函数f(x)=log3(1﹣x)的定义域满足:1﹣x>0,解得x<1.∴函数f(x)=log3(1﹣x)的定义域是(﹣∞,1).故选C.考点:对数函数的定义域.8、A【解析】
根据复数除法运算求得,从而可得虚部.【详解】由得:本题正确选项:【点睛】本题考查复数虚部的求解问题,关键是通过复数除法运算得到的形式.9、C【解析】
先由样本容量和总体容量确定抽样比,用高一年级抽取的人数除以抽样比即可求出结果.【详解】由题意需要从1800人中抽取90人,所以抽样比为,又样本中高一年级学生有42人,所以该校高一年级学生共有人.故选C【点睛】本题主要考查分层抽样,先确定抽样比,即可确定每层的个体数,属于基础题型.10、C【解析】
由,则只需将函数的图象向左平移个单位长度.【详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【点睛】本题考查了三角函数图像的平移变换,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
分类讨论,去掉绝对值,利用函数的单调性,求得函数各段上的取值,进而得到函数的取值范围,得到答案.【详解】由题意,当时,函数,此时函数为单调递减函数,所以最大值为,此时函数的取值当时,函数,此时函数为单调递减函数,所以最大值为,最小值,所以函数的取值为当时,函数,此时函数为单调递增函数,所以最大值为,此时函数的取值,综上可知,函数的取值范围是.【点睛】本题主要考查了分段函数的值域问题,其中解答中合理分类讨论去掉绝对值,利用函数的单调性求得各段上的值域是解答的关键,着重考查了推理与运算能力,属于基础题.12、44.5【解析】
由茎叶图直接可以求出甲的中位数和乙的平均数,求和即可.【详解】由茎叶图知,甲加工零件个数的中位数为,乙加工零件个数的平均数为,则.【点睛】本题主要考查利用茎叶图求中位数和平均数.13、【解析】
把方程(x2﹣2x+m)(x2﹣2x+n)=0化为x2﹣2x+m=0,或x2﹣2x+n=0,设是第一个方程的根,代入方程即可求得m,则方程的另一个根可求;设另一个方程的根为s,t,(s≤t)根据韦达定理可知∴s+t=2根据等差中项的性质可知四个跟成的等差数列为,s,t,,进而根据数列的第一项和第四项求得公差,则s和t可求,进而根据韦达定理求得n,最后代入|m﹣n|即可.【详解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化为x2﹣2x+m=0①,或x2﹣2x+n=0②,设是方程①的根,则将代入方程①,可解得m,∴方程①的另一个根为.设方程②的另一个根为s,t,(s≤t)则由根与系数的关系知,s+t=2,st=n,又方程①的两根之和也是2,∴s+t由等差数列中的项的性质可知,此等差数列为,s,t,,公差为[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案为【点睛】本题主要考查了等差数列的性质.考查了学生创造性思维和解决问题的能力.14、05【解析】
根据给定的随机数表的读取规则,从第一行第6、7列开始,两个数字一组,从左向右读取,重复的或超出编号范围的跳过,即可.【详解】根据随机数表,排除超过33及重复的编号,第一个编号为21,第二个编号为32,第三个编号05,故选出来的第3个红色球的编号为05.【点睛】本题主要考查了简单随机抽样中的随机数表法,属于容易题.15、【解析】
设出点P、Q的坐标,利用平面向量的坐标运算以及两圆相交的条件求出实数m的取值范围.【详解】设点,由得,由点在圆上,得,又在圆上,,与有交点,则,解得故实数m的取值范围为.故答案为:【点睛】本题考查了向量的坐标运算、利用圆与圆的位置关系求参数的取值范围,属于中档题.16、【解析】
由反函数的性质可得的图象过,将代入,即可得结果.【详解】的反函数的图象过点,的图象过,故答案为.【点睛】本题主要考查反函数的基本性质,意在考查对基础知识掌握的熟练程度,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)方案一概率为,方案二概率为.【解析】
(1)利用一次函数和分段函数分别表示方案一、方案二的月工资与的关系式;(2)分别计算方案一、方案二的推销员的月工资超过11090元的概率值.【详解】解:(1)方案一:,;方案二:月工资为,所以.(2)方案一中推销员的月工资超过11090元,则,解得,所以方案一中推销员的月工资超过11090元的概率为;方案二中推销员的月工资超过11090元,则,解得,所以方案二中推销员的月工资超过11090元的概率为.【点睛】本题考查了分段函数与应用问题,也考查了利用频率估计概率的应用问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.18、(1).(2)证明见解析【解析】
(1)由,可得当时,,两式相减可求数列的通项公式;(2)将带入,再计算,通过裂项相消计算,即可证明出。【详解】(1)解:∵,∴(,),两式相减得:,∴.当时,,满足上式,∴.(2)证明:由(1)知,∴,∴,∴.【点睛】本题考查利用公式求解数列的通项公式及裂项相消求数列的前n项和,属于基础题。19、(1)an=3n-1【解析】
(1)设等差数列bn公差为d,则b解得d=3,bn当n≥2时,an=2Sn-1a2=2a1+1=3aan是以1为首项3为公比的等比数列,则.;(2)由(1)知,Sn原不等式可化为k≥6(n-2)若对任意的n∈N*恒成立,问题转化为求数列6(n-2)3令cn=6(n-2)解得52≤n≤7即cn的最大项为第3项,c3=62720、(1);=.(2)【解析】试题分析:(1)先根据偶次根式非负得不等式,解不等式得A,B,再结合数轴求交,并,补(2)先根据得,再根据数轴得实数的取值范围.试题解析:(1)若,则由已知有因此;,所以=.(2)∴,又==∴21、(1)见解析;(2)见解析【解析】
1)连结BD交AC于O,连结EO,由EO//PB可证PB//平面EA.(2)由侧面PAD⊥底面ABCD,,可证,又PAD是正三角形,所以AE⊥平面PCD.(3)设N为AD中点,连接PN,则,可证PN⊥底面ABCD,所以要使PB⊥AC,只需NB⊥AC,由相似三角形可求得比值.【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提高英语语音的课程设计
- 思政与学科整合课程设计
- 小学积极心理学课程设计
- 热工设备步进炉课程设计
- 插床机构凸轮课程设计
- 2024年度个人信用担保授信合同追偿责任规定2篇
- 2024版绿色家居家具设计合同书2篇
- 2024年度企业实习期员工入职劳动合同书2篇
- 2024年住宅小区物业服务合同3篇
- 2024版航空公司食堂2024年度烹饪服务采购合同
- 《SYT6848-2023地下储气库设计规范》
- 2024至2030年中国甲醚化氨基树脂行业投资前景及策略咨询研究报告
- 行政案例分析-第二次形成性考核-国开(SC)-参考资料
- 2024-2025学年人教版八年级上学期数学期末复习试题(含答案)
- 【MOOC】中级财务会计-北京交通大学 中国大学慕课MOOC答案
- “感恩老师”教师节主题班会教案【三篇】
- 《园林政策与法规》课件
- 读书分享《终身成长》课件
- GB/T 44843-2024在用自动扶梯和自动人行道安全评估规范
- 广东省广州市2023-2024学年六年级上学期语文期末试卷(含答案)
- 危险化学品经营单位主要负责人考试练习题(含答案)
评论
0/150
提交评论