版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省淮南市第二中学高一下数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法,求某多项式值的一个实例,若输入的值分别为4和2,则输出的值为()A.32 B.64 C.65 D.1302.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B. C. D.3.在中,角、、所对的边分别为、、,如果,则的形状是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形4.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于()A. B. C. D.5.设为锐角,,若与共线,则角()A.15° B.30° C.45° D.60°6.直线与直线垂直,则的值为()A.3 B. C.2 D.7.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是()A. B. C. D.8.若数列{an}前8项的值各异,且an+8=an对任意n∈N*都成立,则下列数列中可取遍{an}前8项值的数列为()A.{a2k+1} B.{a3k+1} C.{a4k+1} D.{a6k+1}9.设正实数x,y,z满足x2-3xy+4y2-z=0,则当取得最小值时,x+2y-z的最大值为()A.0 B.C.2 D.10.一个几何体的三视图如图所示,则这个几何体的表面积为()A.13+5 B.11+5 C.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.12.从集合A={-1,1,2}中随机选取一个数记为k,从集合B={-2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为_____.13.已知球的表面积为4,则该球的体积为________.14.已知是等比数列,且,,那么________________.15.平面四边形如图所示,其中为锐角三角形,,,则_______.16.如图,在正方体中,有以下结论:①平面;②平面;③;④异面直线与所成的角为.则其中正确结论的序号是____(写出所有正确结论的序号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的定义域为R(1)求的取值范围;(2)若函数的最小值为,解关于的不等式。18.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.19.已知数列满足,.(1)求数列的通项公式;(2)当时,证明不等式:.20.若不等式恒成立,求实数a的取值范围。21.在平面直角坐标系中,已知.(1)求的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】程序运行循环时变量值为:;;;,退出循环,输出,故选C.2、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A3、C【解析】
结合正弦定理和三角恒等变换及三角函数的诱导公式化简即可求得结果【详解】利用正弦定理得,化简得,即,则或,解得或故的形状是等腰三角形或直角三角形故选:C【点睛】本题考查根据正弦定理和三角恒等变化,三角函数的诱导公式化简求值,属于中档题4、D【解析】
在三角形中,利用正弦定理求得,然后在三角形中求得.【详解】在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=.在Rt△ABC中,AB=BCtan∠ACB=15×=15.故选:D【点睛】本小题主要考查正弦定理解三角形,考查解直角三角形,属于基础题.5、B【解析】由题意,,又为锐角,∴.故选B.6、A【解析】
根据两条直线垂直的条件列方程,解方程求得的值.【详解】由于直线与直线垂直,所以,解得.故选:A【点睛】本小题主要考查两条直线垂直的条件,属于基础题.7、B【解析】
根据题意,打电话的顺序是任意的,打电话给甲乙丙三人的概率都相等均为,从而可得到正确的选项.【详解】∵打电话的顺序是任意的,打电话给甲、乙、丙三人的概率都相等,∴第一个打电话给甲的概率为.故选:B.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8、B【解析】
数列是周期为8的数列;,;故选B9、C【解析】
由题得z=x2+4y2-3xy≥4xy-3xy=xy(x,y,z>0),即z≥xy,≥1.当且仅当x=2y时等号成立,则x+2y-z=2y+2y-(4y2-6y2+4y2)=4y-2y2=-2(y2-2y)=-2[(y-1)2-1]=-2(y-1)2+2.当y=1时,x+2y-z有最大值2.故选C.10、B【解析】
三视图可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成.【详解】几何体可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成S=【点睛】已知三视图,求原几何体的表面积或体积是高考必考内容,主要考查空间想象能力,需要熟练掌握常见的几何体的三视图,会识别出简单的组合体.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.12、【解析】由题意,基本事件总数为3×3=9,其中满足直线y=kx+b不经过第三象限的,即满足有k=-1,b=1或k=-1,b=2两种,故所求的概率为.13、【解析】
先根据球的表面积公式求出半径,再根据体积公式求解.【详解】设球半径为,则,解得,所以【点睛】本题考查球的面积、体积计算,属于基础题.14、【解析】
先根据等比数列性质化简方程,再根据平方性质得结果.【详解】∵是等比数列,且,,∴,即,则.【点睛】本题考查等比数列性质,考查基本求解能力.15、.【解析】
由二倍角公式求出,然后用余弦定理求得,再由余弦定理求.【详解】由题意,在中,,在中,,即,解得,或.若,则,,不合题意,舍去,所以.故答案为:.【点睛】本题考查余弦的二倍角公式,考查余弦定理.掌握余弦定理是解题关键.16、①③【解析】
①:利用线面平行的判定定理可以直接判断是正确的结论;②:举反例可以判断出该结论是错误的;③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;④:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】①:平面,平面平面,故本结论是正确的;②:在正方形中,,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本结论是正确的;④:因为,所以异面直线与所成的角为,在正方形中,,故本结论是错误的,因此正确结论的序号是①③.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由的定义域为可知,,恒成立,即可求出的范围.(2)结合的范围,运用配方法,即可求出的值,进而求解不等式.【详解】(1)由已知可得对,恒成立,当时,恒成立。当时,则有,解得,综上可知,的取值范围是[0,1](2)由(1)可知的取值范围是[0,1]显然,当时,,不符合.所以,,,由题意得,,,可化为,解得,不等式的解集为。【点睛】主要考查了一元二次不等式在上恒成立求参数范围,配方法以及一元二次不等式求解问题,属于中档题.对任意实数恒成立的条件是;而任意实数恒成立的条件是.18、(1)见证明;(2)见证明;(3)【解析】
(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可知平面平面;(3)连接,由(2)知,平面平面,可知即为与平面的夹角,求解即可.【详解】(1)证明:连接,交于,则为中点,连接OP,∵P为的中点,∴,∵OP⊂平面,⊄平面,∴平面;(2)证明:长方体中,,底面是正方形,则AC⊥BD,又⊥面,则.∵⊂平面,⊂平面,,∴平面.∵平面,∴平面平面;(3)解:连接,由(2)知,平面平面,∴即为与平面的夹角,在长方体中,∵,∴.在中,.∴直线与平面的夹角为.【点睛】本题考查了线面平行、面面垂直的证明,考查了线面角的求法,考查了学生的空间想象能力和计算求解能力,属于中档题.19、(1);(2)见解析.【解析】
(1)分和两种情况讨论,利用,可得出数列的通项公式;(2)由得,从而可得,即可证明出结论.【详解】(1),,.①当时,数列是各项均为的常数列,则;②当时,数列是以为首项,以为公比的等比数列,,.当时,也适合.综上所述,;(2)由,得,,,,因此,.【点睛】本题考查数列的通项,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.20、【解析】
恒成立的条件下由于给定了的范围,故可考虑对进行分类,同时利用参变分离法求解的范围.【详解】由题意得(1),时,恒成立(2),等价于又∴∴实数a的取值范围是【点睛】含有分式的不等式恒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《陶瓷材料冲击响应行为的离散单元法模拟》
- 《成本粘性对跨国公司绩效的影响研究》
- 2024年创意办公家具购买合同
- 2024年客运丛业资格证考试
- 2024年度加工承揽合同标的质量与验收
- 2024年合作客运资格证仿真试题
- 专题04天气与气候(第01期)-2023年中考地理真题分项汇编
- 2024年白银道路客运输从业资格证到期换证考试
- 2024年沈阳汽车驾驶员客运资格证考试题库及答案
- 2023届新高考化学选考一轮总复习学案-热点17 同分异构体的书写及数目判断
- 某港口码头工程施工组织设计
- 职业技术学校老年保健与管理专业(三年制)人才培养方案
- 2024年秋季人教版新教材七年级上册语文全册教案(名师教学设计简案)
- 有子女民政局常用协议离婚书格式2024年
- 中国介入医学白皮书(2021 版)
- 2024中华人民共和国农村集体经济组织法详细解读课件
- 代运营合作服务协议
- 婚内财产协议书(2024版)
- 有限空间作业应急管理制度
- 2024全国普法知识考试题库及答案
- 化工企业中试阶段及试生产期间的产品能否对外销售
评论
0/150
提交评论