版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南京市第二十九中高一数学第二学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,的对边分别为,,,若,,,则()A. B. C. D.2.点直线与线段相交,则实数的取值范围是()A. B.或C. D.或3.把函数的图象沿轴向右平移个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的,可得函数的图象,则的解析式为()A. B.C. D.4.已知.为等比数列的前项和,若,,则()A.31 B.32 C.63 D.645.设是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,,则B.若,,则C.若,,则是异面直线D.若,,,则6.已知,则等于()A. B. C. D.37.己知向量,,,则“”是“”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件8.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元,甲、乙电视台的广告费标准分别是500元/分钟和200元/分钟,假设甲、乙两个电视台为该公司做的广告能给公司带来的收益分别为0.4万元/分钟和0.2万元/分钟,那么该公司合理分配在甲、乙两个电视台的广告时间,能使公司获得最大的收益是()万元A.72 B.80 C.84 D.909.一组数据0,1,2,3,4的方差是A. B. C.2 D.410.已知函数,正实数是公差为正数的等差数列,且满足,若实数是方程的一个解,那么下列四个判断:①;②;③;④中一定不成立的是()A.① B.②③ C.①④ D.④二、填空题:本大题共6小题,每小题5分,共30分。11.已知,为单位向量,且,若向量满足,则的最小值为_____.12.函数在区间上的最大值为,则的值是_____________.13.已知向量,且,则___________.14.不等式的解集是_______.15.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.16.直线与直线垂直,则实数的值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,直三棱柱中,,,,,为垂足.(1)求证:(2)求三棱锥的体积.18.在锐角三角形中,分别是角的对边,且.(1)求角的大小;(2)若,求的取值范围.19.如图,在三棱锥中,点,分别是,的中点,,.求证:⑴平面;⑵.20.为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:(Ⅰ)图中m的值;(II)估计全年级本次考试的平均分;(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.21.在中,,且.(1)求边长;(2)求边上中线的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由余弦定理可直接求出边的长.【详解】由余弦定理可得,,所以.故选A.【点睛】本题考查了余弦定理的运用,考查了计算能力,属于基础题.2、C【解析】
直线经过定点,斜率为,数形结合利用直线的斜率公式,求得实数的取值范围,得到答案.【详解】如图所示,直线经过定点,斜率为,当直线经过点时,则,当直线经过点时,则,所以实数的取值范围,故选C.【点睛】本题主要考查了直线过定点问题,以及直线的斜率公式的应用,着重考查了数形结合法,以及推理与运算能力,属于基础题.3、C【解析】
根据三角函数图像变换的原则,即可得出结果.【详解】先把函数的图象沿轴向右平移个单位,得到;再把图像上各点的纵坐标不变,横坐标变为原来的,得到.故选C【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型.4、C【解析】
首先根据题意求出和的值,再计算即可.【详解】有题知:,解得,.故选:C【点睛】本题主要考查等比数列的性质以及前项和的求法,属于简单题.5、A【解析】
利用线面垂直的判定,线面平行的判定,线线的位置关系及面面平行的性质逐一判断即可.【详解】对于A,垂直于同一个平面的两条直线互相平行,故A正确.对于B,若,,则或,故B错误.对于C,若,,则位置关系为平行或相交或异面,故C错误.对于D,若,,,则位置关系为平行或异面,故D错误.故选:A【点睛】本题主要考查了线面垂直的性质,线面平行的判定和面面平行的性质,属于简单题.6、C【解析】
等式分子分母同时除以即可得解.【详解】由可得.故选:C.【点睛】本题考查了三角函数商数关系的应用,属于基础题.7、A【解析】
先由题意,得到,再由充分条件与必要条件的概念,即可得出结果.【详解】因为,,所以,若,则,所以;若,则,所以;综上,“”是“”的充要条件.故选:A【点睛】本题主要考查向量共线的坐标表示,以及命题的充要条件的判定,熟记充分条件与必要条件的概念,以及向量共线的坐标表示即可,属于常考题型.8、B【解析】
设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,根据题意得到约束条件,目标函数,平行目标函数图象找到在纵轴上截距最大时所经过的点,把点的坐标代入目标函数中即可.【详解】设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,则由题意可得可行解域:,目标函数为可行解域化简得,,在平面直角坐标系内,画出可行解域,如下图所示:作直线,即,平行移动直线,当直线过点时,目标函数取得最大值,联立,解得,所以点坐标为,因此目标函数最大值为,故本题选B.【点睛】本题考查了应用线性规划知识解决实际问题的能力,正确列出约束条件,画出可行解域是解题的关键.9、C【解析】
先求得平均数,再根据方差公式计算。【详解】数据的平均数为:方差是=2,选C。【点睛】方差公式,代入计算即可。10、D【解析】
先判断出函数的单调性,分两种情况讨论:①;②.结合零点存在定理进行判断.【详解】在上单调减,值域为,又.(1)若,由知,③成立;(2)若,此时,①②③成立.综上,一定不成立的是④,故选D.【点睛】本题考查零点存在定理的应用,考查自变量大小的比较,解题时要充分考查函数的单调性,对函数值符号不确定的,要进行分类讨论,结合零点存在定理来进行判断,考查分析问题和解决问题的能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
由题意设,,,由得出,它表示圆,由,利用向量的模的几何意义从而得到最小值.【详解】由题意设,,,因,即,所以,它表示圆心为,半径的圆,又,所以,而表示圆上的点与点的距离的平方,由,所以,故的最小值为.故答案为:.【点睛】本题考查了平面向量的数量积与应用问题,也考查了圆的方程与应用问题,属于中档题.12、【解析】
利用同角三角函数平方关系,易将函数化为二次型的函数,结合余弦函数的性质,及函数在上的最大值为1,易求出的值.【详解】函数又函数在上的最大值为1,≤0,又,且在上单调递增,所以即.故答案为:【点睛】本题考查的知识点是三角函数的最值,其中利用同角三角函数平方关系,将函数化为二次型的函数,是解答本题的关键,属于中档题.13、【解析】
把平方,将代入,化简即可得结果.【详解】因为,所以,,故答案为.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).14、【解析】
且,然后解一元二次不等式可得解集.【详解】解:,∴且,或,不等式的解集为,故答案为:.【点睛】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.15、【解析】
由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【点睛】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.16、【解析】
由题得(-1),解之即得a的值.【详解】由题得(-1),所以a=2.故答案为;2【点睛】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】
(1)先证得平面,由此证得,结合题意所给已知条件,证得平面,从而证得.(2)首先证得平面,由计算出三棱锥的体积.【详解】(1)证明:,∴,又,从而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【点睛】本小题主要考查线线垂直的证明,考查线面垂直的判定定理的运用,考查三棱锥体积的求法,属于中档题.18、(1);(2)【解析】
(1)利用正弦定理边化角,可整理求得,根据三角形为锐角三角形可确定的取值;(2)利用正弦定理可将转化为,利用两角和差正弦公式、辅助角公式整理得到,根据的范围可求得正弦型函数的值域,进而得到所求取值范围.【详解】(1)由正弦定理得:为锐角三角形,,即(2)由正弦定理得:为锐角三角形,,即【点睛】本题考查正弦定理边化角的应用、边长之和的范围的求解问题;求解边长之和范围问题的关键是能够利用正弦定理将问题转化为三角函数值域的求解问题;易错点是在求解三角函数值域时,忽略角的范围限制,造成求解错误.19、(1)见证明;(2)见证明【解析】
(1)由中位线定理即可说明,由此证明平面;(2)首先证明平面,由线面垂直的性质即可证明【详解】证明:⑴因为在中,点,分别是,的中点所以又因平面,平面从而平面⑵因为点是的中点,且所以又因,平面,平面,故平面因为平面所以【点睛】本题考查线面平行、线面垂直的判定以及线面垂直的性质,属于基础题.20、(I)0.045;(II)75;(III)0.7【解析】
(Ⅰ)根据频率之和为1,结合题中数据,即可求出结果;(II)每组的中间值乘以该组频率,再求和,即可得出结果;(III)用列举法列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求的概率.【详解】(Ⅰ)由题意可得:(Ⅱ)各组的频率分别为0.05,0.25,0.45,0.15,0.1,所以可估计全年级的平均分为;(Ⅲ)分数落在[80,90)的人数有3人,设为a,b,c,落在[90,100的人数有2人,设为A、B,则从中随机抽取两名的结果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10种,其中至少有一人不低于90分的有7种,故概率为0.7.【点睛】本题主要考查由频率分布直方图求参数,以及求均值的问题,同时考查古典
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024天津旅游度假区土地承包使用权出租协议3篇
- 2024-2030年中国多層押出與切斷機商业计划书
- 2024-2030年中国垃圾焚烧发电行业当前经济形势及投资建议研究报告
- 2024-2030年中国喷雾通风玻璃钢冷却塔项目投资风险分析报告
- 2024年战略合作:全方位市场营销协议3篇
- 2024年度工程欠款结算付款合同3篇
- 2024年度国有企业内部基础设施建设无偿借款合同3篇
- 2024年度健康食品原材料研发与生产合作合同3篇
- 微专题锂离子电池-2024高考化学一轮考点击破
- 马鞍山学院《社会组织与社会治理》2023-2024学年第一学期期末试卷
- 保险客服正规劳动合同范本
- 变电站运维培训
- 劳动争议仲裁申请书范本
- 学习解读2024年新制定的学位法课件
- 四川省高等教育自学考试自考毕业生登记表001汇编
- Python语言程序设计课程教学改革的理想选择
- 印度电梯行业市场调研及投资前景分析报告
- 国家开放大学《民法学(1)》案例练习参考答案
- 中药新药临床研究指导原则
- 升降机机使用风险识别及应对措施表-2023年建筑施工现场管理
- 京东招聘测评题库答案大全
评论
0/150
提交评论