![四川省成都市金牛区外国语学校2025届数学高一下期末监测试题含解析_第1页](http://file4.renrendoc.com/view12/M03/3E/34/wKhkGWZyL-eABpnFAAIV5pP6vz8018.jpg)
![四川省成都市金牛区外国语学校2025届数学高一下期末监测试题含解析_第2页](http://file4.renrendoc.com/view12/M03/3E/34/wKhkGWZyL-eABpnFAAIV5pP6vz80182.jpg)
![四川省成都市金牛区外国语学校2025届数学高一下期末监测试题含解析_第3页](http://file4.renrendoc.com/view12/M03/3E/34/wKhkGWZyL-eABpnFAAIV5pP6vz80183.jpg)
![四川省成都市金牛区外国语学校2025届数学高一下期末监测试题含解析_第4页](http://file4.renrendoc.com/view12/M03/3E/34/wKhkGWZyL-eABpnFAAIV5pP6vz80184.jpg)
![四川省成都市金牛区外国语学校2025届数学高一下期末监测试题含解析_第5页](http://file4.renrendoc.com/view12/M03/3E/34/wKhkGWZyL-eABpnFAAIV5pP6vz80185.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市金牛区外国语学校2025届数学高一下期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在时取最大值,在是取最小值,则以下各式:①;②;③可能成立的个数是()A.0 B.1 C.2 D.32.某公司的广告费支出与销售额(单位:万元)之间有下列对应数据:已知对呈线性相关关系,且回归方程为,工作人员不慎将表格中的第一个数据遗失,该数据为()A.28 B.30 C.32 D.353.是等差数列的前n项和,如果,那么的值是()A.12 B.24 C.36 D.484.若向量与向量不相等,则与一定()A.不共线 B.长度不相等 C.不都是单位向量 D.不都是零向量5.圆与圆的位置关系是()A.相切 B.内含 C.相离 D.相交6.已知为第Ⅱ象限角,则的值为()A. B. C. D.7.已知函数,若方程有5个解,则的取值范围是()A. B. C. D.8.若是2与8的等比中项,则等于()A. B. C. D.329.已知为等比数列,是它的前项和.若,且与的等差中项为,则()A.31 B.32 C. D.10.等比数列{an}中,a3=12A.3×10-5C.128 D.3×2-5二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若对任意,均有,则的最小值为______;12.过点作圆的切线,则切线的方程为_____.13.=__________.14.若正四棱锥的底面边长为,侧棱长为,则该正四棱锥的体积为______.15.在中,,过直角顶点作射线交线段于点,则的概率为______.16.已知,,,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角、、所对的边分别为、、,且满足.(1)求角的大小;(2)若,,求的面积.18.已知数列前项和为,满足,(1)证明:数列是等差数列,并求;(2)设,求证:.19.如图,在四棱锥中,丄平面,,,,,.(1)证明丄;(2)求二面角的正弦值;(3)设为棱上的点,满足异面直线与所成的角为,求的长.20.己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于A,B两点,且OA⊥OB.(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;(2)若直线l过点(0,2),求l的方程.21.已知等比数列为递增数列,,,数列满足.(1)求数列的通项公式;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由余弦函数性质得,(),解出后,计算,可知三个等式都不可能成立.【详解】由题意,(),解得,,,,三个都不可能成立,正确个数为1.故选A.【点睛】本题考查余弦函数的图象与性质,解题时要注意对中的整数要用不同的字母表示,否则可能出现遗漏,出现错误.2、B【解析】
由回归方程经过样本中心点,求得样本平均数后代入回归方程即可求得第一组的数值.【详解】设第一组数据为,则,,根据回归方程经过样本中心点,代入回归方程,可得,解得,故选:B.【点睛】本题考查了回归方程的性质及简单应用,属于基础题.3、B【解析】
由等差数列的性质:若m+n=p+q,则即可得.【详解】故选B【点睛】本题考查等比数列前n项和的求解和性质的应用,是基础题型,解题中要注意认真审题,注意下标的变化规律,合理地进行等价转化.4、D【解析】
由方向相同且模相等的向量为相等向量,再逐一判断即可得解.【详解】解:向量与向量不相等,它们有可能共线、有可能长度相等、有可能都是单位向量但方向不相同,但不能都是零向量,即选项A、B、C错误,D正确.故选:D.【点睛】本题考查了相等向量的定义,属基础题.5、D【解析】
写出两圆的圆心,根据两点间距离公式求得两圆心的距离,发现,所以两圆相交。比较三者之间大小判断位置关系。【详解】两圆的圆心分别为:,,半径分别为:,,两圆心距为:,所以,两圆相交,选D。【点睛】通过比较圆心距和半径和与半径差直接的关系判断,即比较三者之间大小。6、B【解析】
首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【详解】因为,所以或,又为第Ⅱ象限角,故,.因为为第Ⅱ象限角即,所以,,即为第Ⅰ,Ⅲ象限角.由于,解得,故选B.【点睛】本题主要考查二倍角公式的应用以及象限角的集合应用.7、D【解析】
利用因式分解法,求出方程的解,结合函数的性质,根据题意可以求出的取值范围.【详解】,,或,由题意可知:,由题可知:当时,有2个解且有2个解且,当时,,因为,所以函数是偶函数,当时,函数是减函数,故有,函数是偶函数,所以图象关于纵轴对称,即当时有,,所以,综上所述;的取值范围是,故本题选D.【点睛】本题考查了已知方程解的情况求参数取值问题,正确分析函数的性质,是解题的关键.8、B【解析】
利用等比中项性质列出等式,解出即可。【详解】由题意知,,∴.故选B【点睛】本题考查等比中项,属于基础题。9、A【解析】
根据与的等差中项为,可得到一个等式,和,组成一个方程组,结合等比数列的性质,这个方程组转化为关于和公比的方程组,解这个方程组,求出和公比的值,再利用等比数列前项和公式,求出的值.【详解】因为与的等差中项为,所以,因此有,故本题选A.【点睛】本题考查了等差中项的性质,等比数列的通项公式以及前项和公式,10、D【解析】
根据等比数列的通项公式得到公比,进而得到通项.【详解】设公比为q,则12q+12q=30,∴∴q=2或q=12,∴a10即3×29或故选D.【点睛】本题考查了等比数列通项公式的应用,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.12、或【解析】
求出圆的圆心与半径分别为:,,分别设出直线斜率存在与不存在情况下的直线方程,利用点到直线的距离等于半径即可得到答案.【详解】由圆的一般方程得到圆的圆心和半径分别为;,;(1)当过点的切线斜率不存在时,切线方程为:,此时圆心到直线的距离,故不与圆相切,不满足题意;(2)当过点的切线的斜率存在时,设切线方程为:,即为;由于直线与圆相切,所以圆心到切线的距离等于半径,即,解得:或,所以切线的方程为或;综述所述:切线的方程或【点睛】本题考查过圆外一点求圆的切线方程,解题关键是设出切线方程,利用圆心到切线的距离等于半径得到关系式,属于中档题.13、2【解析】由对数的运算性质可得到,故答案为2.14、4.【解析】
设正四棱锥的高为PO,连结AO,在直角三角形POA中,求得高,利用体积公式,即可求解.【详解】由题意,如图所示,正四棱锥P-ABCD中,AB=,PA=设正四棱锥的高为PO,连结AO,则AO=,在直角三角形POA中,,∴.【点睛】本题主要考查了正棱锥体积的计算,其中解答中熟记正棱锥的性质,以及棱锥的体积公式,准确计算是解答的关键,着重考查了推理与运算能力.15、【解析】
设,求出的长,由几何概型概率公式计算.【详解】设,由题意得,,∴的概率是.故答案为:.【点睛】本题考查几何概型,考查长度型几何概型.掌握几何概型概率公式是解题关键.16、-3【解析】由可知,解得,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
分析:(1)由,利用正弦定理可得,结合两角和的正弦公式以及诱导公式可得;从而可得结果;(2)由余弦定理可得可得,所以.详解:(1)∵∴∴(2)∵∴∴点睛:解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18、(1).(2)见解析.【解析】(1)由可得,当时,,两式相减可是等差数列,结合等差数列的通项公式可求进而可求(2)由(1)可得,利用裂项相消法可求和,即可证明.试题分析:(1)(2)试题解析:(1)由知,当即所以而故数列是以1为首项,1为公差的等差数列,且(2)因为所以考点:数列递推式;等差关系的确定;数列的求和19、(1)见证明;(2);(3)【解析】
(1)要证异面直线垂直,即证线面垂直,本题需证平面(2)作于点,连接.为二面角的平面角,在中解出即可.(3)过点作的平行线与线段相交,交点为,连接,;计算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的长【详解】(1)证明:由平面,可得,又由,,故平面.又平面,所以.(2)如图,作于点,连接.由,,可得平面.因此,从而为二面角的平面角.在中,,,由此得由(1)知,故在中,因此所以二面角的正弦值为.(3)因为,故过点作的平行线必与线段相交,设交点为,连接,;∴或其补角为异面直线与所成的角;由于,故;在中,,;∴;∴在中,由,,可得:;由余弦定理,可得,,解得:,设;在中,;在中,;∴在中,,∴;;解得;∴.【点睛】本题主要考查线线垂直、二面角的平面角、异面直线所成角的.属于中档题.20、(1);(2).【解析】
(1)根据题意,求得直线OB的方程,利用点到直线的距离公式求得圆心到直线OB的距离,之后应用圆中的特殊三角形,求得弦长;(2)根据题意,可判断直线的斜率是存在的,设出其方程,与圆的方程联立,得到两根和与两根积,根据OA⊥OB,利用向量数量积等于零得到所满足的等量关系式,求得结果.【详解】(1)因为直线OA的方程为,,所以直线OB的方程.从而圆心到直线OB的距离为:所以直线OB被团C截得的弦长为:.(2)依题意,直线l的斜率必存在,不妨设其为k,则l的方程为,又设,.由得,所以,.从而.所以.因为,所以,即,解得.所以l的方程为.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有两直线垂直的条件,直线被圆截得的弦长,直线方程的求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临沂道路运输从业人员资格考试内容有哪些
- 电瓶车撞车调解协议书(2篇)
- 电力售后服务合同(2篇)
- 2024-2025学年高中政治第一单元生活与消费课题能力提升三含解析新人教版必修1
- 二年级教师下学期工作总结
- 一学期教学工作总结
- 公司设计师工作总结
- 老师教研年度工作总结
- 入团申请书模板
- 公司员工培训计划方案
- 固废运输方案
- 医疗美容门诊病历
- 停车场管理外包服务合同
- 医疗健康-泌尿生殖系统外科疾病主要症状医学课件
- 中国节能协会团体标准草案模板
- 招投标现场项目经理答辩(完整版)资料
- 大学开学第一课班会PPT
- 企业新春茶话会PPT模板
- 重大事故隐患整改台账
- DB15T 2058-2021 分梳绵羊毛标准
- (高职)银行基本技能ppt课件(完整版)
评论
0/150
提交评论