2025届福建省宁德一中数学高一下期末达标检测模拟试题含解析_第1页
2025届福建省宁德一中数学高一下期末达标检测模拟试题含解析_第2页
2025届福建省宁德一中数学高一下期末达标检测模拟试题含解析_第3页
2025届福建省宁德一中数学高一下期末达标检测模拟试题含解析_第4页
2025届福建省宁德一中数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省宁德一中数学高一下期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为()A. B. C. D.2.已知角的终边经过点,则A. B. C. D.3.已知数列是各项均为正数且公比不等于1的等比数列,对于函数,若数列为等差数列,则称函数为“保比差数列函数”,现有定义在上的如下函数:①,②,③;④,则为“保比差数列函数”的所有序号为()A.①② B.①②④ C.③④ D.①②③④4.设的内角所对边分别为.则该三角形()A.无解 B.有一解 C.有两解 D.不能确定5.已知,,,则与的夹角为()A. B. C. D.6.某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.两次都中靶D.两次都不中靶7.设,则()A. B. C. D.8.已知函数(,)的图象的相邻两条对称轴之间的距离为,将函数的图象向右平移()个单位长度后得到函数的图象,若,的图象都经过点,则的一个可能值是()A. B. C. D.9.“”是“函数,有反函数”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.即非充分又非必要条件10.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,若,(),则________12.若,则____________.13.已知3a=2,则32a=____,log318﹣a=_____14.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).15.如图,长方体中,,,,与相交于点,则点的坐标为______________.16.从分别写有1,2,3,4,5的五张卡片中,任取两张,这两张卡片上的数字之差的绝对值等于1的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,若,且,,求满足条件的,.18.已知函数,其中常数;(1)令,判定函数的奇偶性,并说明理由;(2)令,将函数图像向右平移个单位,再向上平移1个单位,得到函数的图像,对任意,求在区间上零点个数的所有可能值;19.一扇形的周长为20,当扇形的圆心角等于多少时,这个扇形的面积最大?最大面积是多少?20.有一款手机,每部购买费用是5000元,每年网络费和电话费共需1000元;每部手机第一年不需维修,第二年维修费用为100元,以后每一年的维修费用均比上一年增加100元.设该款手机每部使用年共需维修费用元,总费用元.(总费用购买费用网络费和电话费维修费用)(1)求函数、的表达式:(2)这款手机每部使用多少年时,它的年平均费用最少?21.已知.(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)求函数在时的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2这个圆柱全面积与侧面积的比为,故选A2、A【解析】

根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.3、B【解析】

设数列{an}的公比为q(q≠1),利用保比差数列函数的定义,逐项验证数列{lnf(an)}为等差数列,即可得到结论.【详解】设数列{an}的公比为q(q≠1)①由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;②由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;③由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常数,∴数列{lnf(an)}不为等差数列,不满足题意;④由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①②④故选:B.【点睛】本题考查新定义,考查对数的运算性质,考查等差数列的判定,考查学生分析解决问题的能力,属于中档题.4、C【解析】

利用正弦定理以及大边对大角定理求出角,从而判断出该三角形解的个数.【详解】由正弦定理得,所以,,,,或,因此,该三角形有两解,故选C.【点睛】本题考查三角形解的个数的判断,解题时可以充分利用解的个数的等价条件来进行判断,具体来讲,在中,给定、、,该三角形解的个数判断如下:(1)为直角或钝角,,一解;,无解;(2)为锐角,或,一解;,两解;,无解.5、C【解析】

设与的夹角为,计算出、、的值,再利用公式结合角的取值范围可求出的值.【详解】设与的夹角为,则,,,另一方面,,,,因此,,,因此,,故选C.【点睛】本题考查利用平面向量的数量积计算平面向量的夹角,解题的关键就是计算出、、的值,考查计算能力,属于中等题.6、D【解析】

根据互斥事件的定义逐个分析即可.【详解】“至少有一次中靶”与“至多有一次中靶”均包含中靶一次的情况.故A错误.“至少有一次中靶”与“只有一次中靶”均包含中靶一次的情况.故B错误.“至少有一次中靶”与“两次都中靶”均包含中靶两次的情况.故C错误.根据互斥事件的定义可得,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.故选:D【点睛】本题主要考查了互斥事件的辨析,属于基础题型.7、C【解析】

首先化简,可得到大小关系,再根据,即可得到的大小关系.【详解】,,.所以.故选:C【点睛】本题主要考查指数,对数的比较大小,熟练掌握指数和对数函数的性质为解题的关键,属于简单题.8、D【解析】由函数的图象的相邻两条对称轴之间的距离为,得函数的最小正周期为,则,所以函数,的图象向右平移个单位长度,得到的图象,以为的图象都经过点,所以,又,所以,所以,所以或,所以或,因为,所以结合选项可知得一个可能的值为,故选D.9、A【解析】

函数,有反函数,则函数,上具有单调性,可得,即可判断出结论.【详解】函数,有反函数,则函数,上具有单调性,.是的真子集,“”是“函数,有反函数”的充分不必要条件.故选:A.【点睛】本题考查了二次函数的单调性、反函数、充分条件与必要条件的判定方法,考查推理能力与计算能力,同时考查函数与方程思想、数形结合思想.10、A【解析】试题分析:当满足l⊂α,l⊥β时可得到α⊥β成立,反之,当l⊂α,α⊥β时,l与β可能相交,可能平行,因此前者是后者的充分不必要条件考点:充分条件与必要条件点评:命题:若p则q是真命题,则p是q的充分条件,q是p的必要条件二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意,得到数列表示首项为1,公差为2的等差数列,结合等差数列的通项公式,即可求解.【详解】由题意,数列中,满足,(),即(),所以数列表示首项为1,公差为2的等差数列,所以.故答案为:【点睛】本题主要考查了等差数列的定义和通项公式的应用,其中解答中熟记等差数列的定义,合理利用数列的通项公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】故答案为.13、42.【解析】

由已知结合指数式的运算性质求解,把化为对数式得到,代入,再由对数的运算性质求解.【详解】∵,∴,由,得,∴.故答案为:,.【点睛】本题考查指数式与对数式的互化,考查对数的运算性质,属于基础题.14、②④.【解析】

利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.15、【解析】

易知是的中点,求出的坐标,根据中点坐标公式求解.【详解】可知,,由中点坐标公式得的坐标公式,即【点睛】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.16、【解析】

基本事件总数n,利用列举法求出这两张卡片上的数字之差的绝对值等于1包含的基本事件有4种情况,由此能求出这两张卡片上的数字之差的绝对值等于1的概率.【详解】从分别写有1,2,3,4,5的五张卡片中,任取两张,基本事件总数n,这两张卡片上的数字之差的绝对值等于1包含的基本事件有:(1,2),(2,3),(3,4),(4,5),共4种情况,∴这两张卡片上的数字之差的绝对值等于1的概率为p.故答案为.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,【解析】

利用三角恒等变换,化简的解析式,从而得出结论.【详解】解:,∴,待定系数,可得,又,∴,∴,.【点睛】本题主要考查三角恒等变换,属于基础题.18、(1)非奇非偶,理由见解析;(2)21或20个.【解析】

(1)先利用辅助角公式化简,再利用和可判断为非奇非偶函数.(2)求出的解析式后结合函数的图像、周期及给定区间的特点可判断在给定的范围上的零点的个数.【详解】(1),则,故不是奇函数,又,,故不是偶函数.综上,为非奇非偶函数.(2),的图象如图所示:令,则,则或,,也就是或者,,所以在形如的区间上恰有两个不同零点.把区间分成10个小区间,它们分别为:,及,根据函数的图像可知:前9个区间的长度恰为一个周期且左闭右开,故每个区间恰有两个不同的零点,最后一个区间的长度恰为一个周期且为闭区间,故该区间上可能有两个不同的零点或3个不同的零点.故在区间上可有21个或者20个零点.【点睛】本题考查正弦型函数的奇偶性、正弦型函数在给定范围上的零点个数,注意说明一个函数不是奇函数或不是偶函数,可通过反例来说明,而零点个数的判断则需综合考虑给定区间的长度、开闭情况及函数的周期.19、;;【解析】

设扇形的半径为,弧长为,利用周长关系,表示出扇形的面积,利用二次函数求出面积的最大值,以及圆心角的大小.【详解】设扇形的半径为,弧长为,则,即,扇形的面积,将上式代入得,所以当且仅当时,有最大值,此时,可得,所以当时,扇形的面积取最大值,最大值为【点睛】本题考查了扇形的弧长公式、面积公式以及二次函数的性质,需熟记扇形的弧长、面积公式,属于基础题.20、(1),;(2)这款手机使用年时它的年平均费用最少【解析】

(1)第年的维修费用为,根据等差数列求和公式可求得;将加上购买费用和年的网络费和电话费总额即可得到;(2)平均费用,利用基本不等式可求得最小值,根据取等条件可求得的取值.【详解】(1)则(2)设每部手机使用年的平均费用为则当,即时,这款手机使用年时它的年平均费用最少【点睛】本题考查构造合适的函数模型解决实际问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论