版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省安顺市平坝一中高一数学第二学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列中,若,则下列命题中真命题个数是()(1)若数列为常数数列,则;(2)若,数列都是单调递增数列;(3)若,任取中的项构成数列的子数(),则都是单调数列.A.个 B.个 C.个 D.个2.设等比数列的公比为,其前项的积为,并且满足条件:;给出下列论:①;②;③值是中最大值;④使成立的最大自然数等于198.其中正确的结论是()A.①③ B.①④ C.②③ D.②④3.已知角的终边经过点,则()A. B. C. D.4.若直线与圆相切,则()A. B. C. D.5.函数的图象向右平移个单位后,得到函数的图象,若为偶函数,则的值为()A. B. C. D.6.在中,角,,的对边分别是,,,若,则()A. B. C. D.7.设函数,其中为已知实常数,,则下列命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则().8.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”,则().A.1 B.2019 C. D.9.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A.8 B.12 C.16 D.2010.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用,表示,方差分别用,表示,则()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.在中,分别是角的对边,,且的周长为5,面积,则=______12.不等式的解集是.13.在赛季季后赛中,当一个球队进行完场比赛被淘汰后,某个篮球爱好者对该队的7场比赛得分情况进行统计,如表:场次得分104为了对这个队的情况进行分析,此人设计计算的算法流程图如图所示(其中是这场比赛的平均得分),输出的的值______.14.直线与的交点坐标为________.15.已知为锐角,,则________.16.将角度化为弧度:________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算:(1)(2)(3)18.某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.(1)求图中x的值;(2)求这组数据的平均数和中位数;(3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.19.已知关于的一元二次函数,从集合中随机取一个数作为此函数的二次项系数,从集合中随机取一个数作为此函数的一次项系数.(1)若,,求函数有零点的概率;(2)若,求函数在区间上是增函数的概率.20.如图,以Ox为始边作角与(),它们终边分别单位圆相交于点、,已知点的坐标为.(1)若,求角的值;(2)若·,求.21.等差数列中,,.(1)求通项公式;(2)若,求的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
对(1),由数列为常数数列,则,解方程可得的值;对(2),由函数,,求得导数和极值,可判断单调性;对(3),由,判断奇偶性和单调性,结合正弦函数的单调性,即可得到结论.【详解】数列中,若,,,(1)若数列为常数数列,则,解得或,故(1)不正确;(2)若,,,由函数,,,由,可得极值点唯一且为,极值为,由,可得,则,即有.由于,,由正弦函数的单调性,可得,则数列都是单调递增数列,故(2)正确;(3)若,任取中的9项,,,,,构成数列的子数列,,2,,9,是单调递增数列;由,可得,为奇函数;当时,,时,;当时,;时,,运用正弦函数的单调性可得或时,数列单调递增;或时,数列单调递减.所以数列都是单调数列,故(3)正确;故选:C.【点睛】本题考查数列的单调性的判断和运用,考查正弦函数的单调性,以及分类讨论思想方法,属于难题.2、B【解析】
利用等比数列的性质及等比数列的通项公式判断①正确;利用等比数列的性质及不等式的性质判断②错误;利用等比数列的性质判断③错误;利用等比数列的性质判断④正确,,从而得出结论.【详解】解:由可得又即由,即,结合,所以,,即,,即,即①正确;又,所以,即,即②错误;因为,即值是中最大值,即③错误;由,即,即,又,即,即④正确,综上可得正确的结论是①④,故选:B.【点睛】本题考查了等比数列的性质及不等式的性质,重点考查了运算能力,属中档题.3、C【解析】
首先根据题意求出,再根据正弦函数的定义即可求出的值.【详解】,.故选:C【点睛】本题主要考查正弦函数的定义,属于简单题.4、C【解析】
利用圆心到直线的距离等于圆的半径即可求解.【详解】由题得圆的圆心坐标为(0,0),所以.故选C【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.5、B【解析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的图象向左平移φ(0<φ<)个单位,得到g(x)=2sin(2x-2φ﹣).为偶函数,故得到,故得到2sin(-2φ﹣)=-2或2,.因为,故得到,k=-1,的值为.故答案为B.6、D【解析】
由题意,再由余弦定理可求出,即可求出答案.【详解】由题意,,设,由余弦定理可得:,则.故选D.【点睛】本题考查了正、余弦定理的应用,考查了计算能力,属于中档题.7、D【解析】
利用两角和的余弦公式化简表达式.对于A选项,将化简得到的表达式代入上述表达式,可判断出A选项为真命题.对于B选项,将化简得到的表达式代入上述表达式,可判断出为奇函数,由此判断出B选项为真命题.对于C选项,将化简得到的表达式代入上述表达式,可判断出为偶函数,由此判断出C选项为真命题.对于D选项,根据、,求得的零点的表达式,由此求得(),进而判断出D选项为假命题.【详解】.不妨设.为已知实常数.若,则得;若,则得.于是当时,对任意实数恒成立,即命题A是真命题;当时,,它为奇函数,即命题B是真命题;当时,,它为偶函数,即命题C是真命题;当时,令,则,上述方程中,若,则,这与矛盾,所以.将该方程的两边同除以得,令(),则,解得().不妨取,(且),则,即(),所以命题D是假命题.故选:D【点睛】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.8、A【解析】
计算部分数值,归纳得到,计算得到答案.【详解】;;;…归纳总结:故故选:【点睛】本题考查了数列的归纳推理,意在考查学生的推理能力.9、B【解析】
先求侧面三角形的斜高,再求该正四棱锥的全面积.【详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选B【点睛】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、D【解析】
分别计算出他们的平均数和方差,比较即得解.【详解】由题意可得,,,.故,.故选D【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
令正弦定理化简已知等式,得到,代入题设,求得的长,利用三角形的面积公式表示出的面积,代入已知等式,再将,即可求解.【详解】在中,因为,由正弦定理,可得,因为的周长为5,即,所以,又因为,即,所以.【点睛】本题主要考查了正弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.12、【解析】
因为,且抛物线开口方向向上,所以,不等式的解集是.13、【解析】
根据题意,模拟程序框图的运行过程,得出该程序运行的是求数据的标准差,即可求得答案.【详解】模拟程序框图的运行过程知,该程序运行的结果是求这个数据的标准差这组数据的平均数是方差是:标准差是故答案为:.【点睛】本题主要考查了根据程序框图求输出结果,解题关键是掌握程序框图基础知识和计算数据方差的解法,考查了分析能力和计算能力,属于中档题.14、【解析】
直接联立方程得到答案.【详解】联立方程解得即两直线的交点坐标为.故答案为【点睛】本题考查了两直线的交点,属于简单题.15、【解析】
利用同角三角函数的基本关系求出,并利用二倍角正切公式计算出的值,再利用两角和的正切公式求出的值.【详解】为锐角,则,,由二倍角正切公式得,因此,,故答案为.【点睛】本题考查同角三角函数的基本关系求值、二倍角正切公式和两角和的正切公式求值,解题的关键就是灵活利用这些公式进行计算,考查运算求解能力,属于中等题.16、【解析】
根据角度和弧度的互化公式求解即可.【详解】.故答案为:.【点睛】本题考查角度和弧度的互化公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
利用诱导公式,对每一道题目进行化简求值.【详解】(1)原式.(2)原式.(3)原式.【点睛】在使用诱导公式时,注意“奇变偶不变,符号看象限”法则的应用,即辅助角为的奇数倍,函数名要改变;若为的偶数倍,函数名不改变.18、(1)0.02(2)平均数77,中位数(3).【解析】
(1)由频率分布直方图的性质列方程能求出x.(2)由频率分布直方图能求出这组数据的平均数和中位数.(3)满意度评分值在[50,60)内有5人,其中男生3人,女生2人,记“满意度评分值为[50,60)的人中随机抽取2人进行座谈,2人均为男生”为事件A,利用古典概型能求出2人均为男生的概率.【详解】(1)由,解得.(2)这组数据的平均数为.中位数设为m,则,解得.(3)满意度评分值在内有人,其中男生3人,女生2人.记为记“满意度评分值为的人中随机抽取2人进行座谈,2人均为男生”为事件A则总基本事件个数为10个,A包含的基本事件个数为3个,利用古典概型概率公式可知.【点睛】本题考查频率平均数、中位数、概率的求法,考查频率分布直方图的性质、古典概型等基础知识,考查运算求解能力,是基础题.19、(1);(2)【解析】
(1)依次列出所有可能的情况,求出满足的情况总数,即可得到概率;(2)列出不等关系,表示出平面区域,求出满足表示的区域的面积,即可得到概率.【详解】(1)由题可得,,从集合中随机取一个数作为此函数的二次项系数,从集合中随机取一个数作为此函数的一次项系数,记为,这样的有序数对共有,9种情况;函数有零点,即满足,满足条件的有:,6种情况,所以其概率为;(2),满足条件的有序数对,,即平面直角坐标系内区域:矩形及内部区域,面积为4,函数在区间上是增函数,即满足,,,即,平面直角坐标系内区域:直角梯形及内部区域,面积为3,所以其概率为.【点睛】此题考查古典概型与几何概型,关键在于准确得出二次函数有零点和在区间上是增函数,分别所对应的基本事件个数以及对应区域的面积.20、(1)(2)【解析】
(1)由已知利用三角函数的定义可求,利用两角差的正切公式即可计算得解;(2)由已知可得,进而求出,最后利用两角和的正弦公式即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学四年级语文上册教材分析
- 人教版小学语文二年级上语文园地三3课件
- 新版思想道德修养与法律基础-第四章课件
- 四年级上册科学教科版课件第4课 我们是怎样听到声音的
- 《人力资源法务》课件
- 土地协议书(2篇)
- 《凡客诚品物流分析》课件
- 《产褥期饮食与保健》课件
- 2023年云南省西双版纳自治州公开招聘警务辅助人员(辅警)笔试自考练习卷一含答案
- 《建筑工程测量绪论》课件
- 即兴表演智慧树知到期末考试答案章节答案2024年上海电影艺术职业学院
- 经典广告解析智慧树知到期末考试答案章节答案2024年成都师范学院
- 汽车行走的艺术智慧树知到期末考试答案章节答案2024年吉林大学
- 心理学研究方法 知到智慧树网课答案
- DZ∕T 0130.13-2006 地质矿产实验室测试质量管理规范 第13部分:矿石加工选冶性能试验(正式版)
- 系统解剖学(南方医科大学)智慧树知到期末考试答案章节答案2024年南方医科大学
- 2023年部编版五年级数学上册期末考试卷【含答案】
- 2024年浙江杭州临安法院编外工作人员招聘笔试参考题库附带答案详解
- 国开电大专科《行政组织学》期末考试第二大题多项选择题库(2024版)
- 工程项目复盘分析报告
- (2024年)污水处理设备培训方案
评论
0/150
提交评论