2025届广东省茂名地区高一数学第二学期期末复习检测试题含解析_第1页
2025届广东省茂名地区高一数学第二学期期末复习检测试题含解析_第2页
2025届广东省茂名地区高一数学第二学期期末复习检测试题含解析_第3页
2025届广东省茂名地区高一数学第二学期期末复习检测试题含解析_第4页
2025届广东省茂名地区高一数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省茂名地区高一数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线与直线平行,则()A. B.或 C. D.或2.已知向量,,则向量在向量方向上的投影为()A. B. C. D.3.已知向量是单位向量,=(3,4),且在方向上的投影为,則A.36 B.21 C.9 D.64.已知底面半径为1,体积为的圆柱,内接于一个高为圆锥(如图),线段AB为圆锥底面的一条直径,则从点A绕圆锥的侧面到点B的最短距离为()A.8 B. C. D.45.已知表示两条不同的直线,表示三个不同的平面,给出下列四个命题:①,,,则;②,,,则;③,,,则;④,,,则其中正确的命题个数是()A.1 B.2 C.3 D.46.下列函数中,是偶函数且在区间上是增函数的是()A. B.C. D.7.在正方体中,异面直线与所成的角为()A.30° B.45° C.60° D.90°8.设集合,,,则()A. B. C. D.9.若直线与圆相切,则的值为A.1 B. C. D.10.在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()345.156.1264.04187.51218.01A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知sin+cosα=,则sin2α=__12.函数的定义域为_____________.13.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)14.从甲、乙、丙、丁四个学生中任选两人到一个单位实习,余下的两人到另一单位实习,则甲、乙两人不在同一单位实习的概率为________.15.在数列中,,则______________.16.在中,角的对边分别为,若面积,则角__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图在四棱锥中,底面是矩形,点、分别是棱和的中点.(1)求证:平面;(2)若,且平面平面,证明平面.18.如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.(1)求证:平面平面BCM;(2)当四棱锥的体积最大时,求AM与CD所成的角.19.设函数.(1)求不等式的解集;(2)若对于,恒成立,求的取值范围.20.已知夹角为,且,,求:(1);(2)与的夹角.21.在一次人才招聘会上,有A、B两家公司分别开出了它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资增加基础上递增5%,设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作年,则他在第年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其它因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元),并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

两直线平行,斜率相等;按,和三类求解.【详解】当即时,两直线为,,两直线不平行,不符合题意;当时,两直线为,两直线不平行,不符合题意;当即时,直线的斜率为,直线的斜率为,因为两直线平行,所以,解得或,故选B.【点睛】本题考查直线平行的斜率关系,注意斜率不存在和斜率为零的情况.2、B【解析】

先计算向量夹角,再利用投影定义计算即可.【详解】由向量,,则,,向量在向量方向上的投影为.故选:B【点睛】本题考查了向量数量积的坐标表示以及向量数量积的几何意义,属于基础题.3、D【解析】

根据公式把模转化为数量积,展开后再根据和已知条件计算.【详解】因为在方向上的投影为,所以,.故选D.【点睛】本题主要考查向量模有关的计算,常用公式有,.4、C【解析】

先求解圆锥的底面半径,再根据侧面展开图的结构计算扇形中间的距离即可.【详解】设圆柱的高为,则,得.因为,所以为的中位线,所以,则.即圆锥的底面半径为1,母线长为4,则展开后所得扇形的弧长为,圆心角为.所以从点A绕圆锥的侧面到点B的最短距离为.故选:C.【点睛】本题主要考查了圆柱与圆锥内切求解有关量的问题以及圆锥的侧面积展开求距离最小值的问题.属于中档题.5、B【解析】

根据线面和线线平行与垂直的性质逐个判定即可.【详解】对①,,,不一定有,故不一定成立.故①错误.对②,令为底面为直角三角形的直三棱柱的三个侧面,且,,,但此时,故不一定成立.故②错误.对③,,,,则成立.故③正确.对④,若,,则,或,又,则.故④正确.综上,③④正确.故选:B【点睛】本题主要考查了根据线面、线线平行与垂直的性质判断命题真假的问题,需要根据题意举出反例或者根据判定定理判定,属于中档题.6、A【解析】

逐一分析选项,得到答案.【详解】A.是偶函数,并且在区间时增函数,满足条件;B.不是偶函数,并且在上是减函数,不满足条件;C.是奇函数,并且在区间上时减函数,不满足条件;D.是偶函数,在区间上是减函数,不满足条件;故选A.【点睛】本题考查了函数的基本性质,属于基础题型.7、C【解析】

首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接.因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.8、A【解析】因为,所以,又因为,,故选A.9、D【解析】圆的圆心坐标为,半径为1,∵直线与圆相切,∴圆心到直线的距离,即,解得,故选D.10、A【解析】

由表中的数据分析得:自变量基本上是等速增加,相应的函数值增加的速度越来越快,结合基本初等函数的单调性,即可得出答案.【详解】对于A:函数在是单调递增,且函数值增加速度越来越快,将自变量代入,相应的函数值,比较接近,符合题意,所以正确;对于B:函数值随着自变量增加是等速的,不合题意;对于C:函数值随着自变量的增加比线性函数还缓慢,不合题意;选项D:函数值随着自变量增加反而减少,不合题意.故选:A.【点睛】本题考查函数模型的选择和应用问题,解题的关键是掌握各种基本初等函数,如一次函数,二次函数,指数函数,对数函数的图像与性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵,∴即,则.故答案为:.12、【解析】函数的定义域为故答案为13、③④【解析】

①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【点睛】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。14、.【解析】

求得从甲、乙、丙、丁四个学生中任选两人的总数和甲、乙两人不在同一单位实习的方法数,由古典概型的概率计算公式可得所求值.【详解】解:从甲、乙、丙、丁四个学生中任选两人的方法数为种,甲、乙两人不在同一单位实习的方法数为种,则甲、乙两人不在同一单位实习的概率为.故答案为:.【点睛】本题主要考查古典概型的概率计算公式,考查运算能力,属于基础题.15、20【解析】

首先根据已知得到:是等差数列,公差,再计算即可.【详解】因为,所以数列是等差数列,公差..故答案为:【点睛】本题主要考查等差数列的判断和等差数列项的求法,属于简单题.16、【解析】

根据面积公式计算出的值,然后利用反三角函数求解出的值.【详解】因为,所以,则,则有:.【点睛】本题考查三角形的面积公式以及余弦定理的应用,难度较易.利用面积公式的时候要选择合适的公式进行化简,可根据所求角进行选择.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明【解析】

(1)可证,从而得到要求证的线面平行.(2)可证,再由及是棱的中点可得,从而得到平面.【详解】(1)证明:因为点、分别是棱和的中点,所以,又在矩形中,,所以,又面,面,所以平面(2)证明:在矩形中,,又平面平面,平面平面,面,所以平面,又面,所以①因为且是的中点,所以,②由①②及面,面,,所以平面.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法可利用三角形的中位线或平行公理.线面垂直的判定可由线线垂直得到,注意线线是相交的,而要求证的线线垂直又可以转化为已知的线面垂直(有时它来自面面垂直)来考虑.18、(1)证明见解析(2)【解析】

(1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CM⊥DM,由面面垂直的性质即可证明;(2)当四棱锥M一ABCD的体积最大时,M为半圆周中点处,可得角MAB就是AM与CD所成的角,利用已知即可求解.【详解】(1)证明:CD为直径,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)当M为半圆弧CD的中点时,四棱锥的体积最大,此时,过点M作MOCD于点E,平面CDM平面ABCDMO平面ABCD,即MO为四棱锥的高又底面ABCD面积为定值2,AM与CD所成的角即AM与AB所成的角,求得,三角形为正三角形,,故AM与CD所成的角为【点睛】本题主要考查异面直线成的角,面面垂直的判定定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.19、(1)见解析;(2).【解析】

(1)由得,然后分、、三种情况来解不等式;(2)由恒成立,由参变量分离法得出,并利用基本不等式求出在上的最小值,即可得出实数的取值范围.【详解】(1),,.当时,不等式的解集为;当时,原不等式为,该不等式的解集为;当时,不等式的解集为;(2)由题意,当时,恒成立,即时,恒成立.由基本不等式得,当且仅当时,等号成立,所以,,因此,实数的取值范围是.【点睛】本题考查含参二次不等式的解法,同时也考查了利用二次不等式恒成立求参数的取值范围,在含单参数的二次不等式恒成立问题时,可充分利用参变量分离法,转化为函数的最值来求解,可避免分类讨论,考查化归与转化思想的应用,属于中等题.20、(1)(2)【解析】试题分析:(1)先求模的平方将问题转化为向量的数量积问题.(2)根据数量积公式即可求得两向量的夹角.(1),,所以.(2)设与的夹角为.则,因为,所以.考点:1向量的数量积;2向量的模长.21、(1)在A公司第年收入为;在B公司连续工作年收入为;(2)应选择A公司,理由见详解;(3)827;理由见详解.【解析】

(1)先分别记该人在A公司第年收入为,在B公司连续工作年收入为,根据题中条件,即可直接得出结果;(2)根据等差数列与等比数列的求和公式,分别计算前的和,即可得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论