2025年中考数学专题08 垂线段最短专题(原卷版)_第1页
2025年中考数学专题08 垂线段最短专题(原卷版)_第2页
2025年中考数学专题08 垂线段最短专题(原卷版)_第3页
2025年中考数学专题08 垂线段最短专题(原卷版)_第4页
2025年中考数学专题08 垂线段最短专题(原卷版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

模型介绍模型介绍R【结论一】如图直线外一点A到直线上所有点的距离中,垂线段AM最小.R【结论二】如图,在三角形ABC中,M、N分别是DE、BC上的动点,连接AM,MN,求AM+MN的最小值。则有以下结论成立:过A作BC的垂线,垂足为Q,于DE相交于P,当M、N分别与P、Q重合时,AM+MN有最小值,即为AQ的长度.R方法点拨1.题型特征:①一定点②动点的运动轨迹为直线R2.模型本质:过定点作定直线的垂线,垂线段最短.例题精讲例题精讲【例1】.如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是.变式训练【变式1】.如图,三角形ABC中,∠ACB=90°,AC=3,BC=4,P为直线AB上一动点,连接PC,则线段PC的最小值是.【变式2】.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.【变式3】.如图,在锐角三角形ABC中,BC=4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,试求CM+MN的最小值.【变式4】.如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=3,点P为线段BD上的一个动点,则MP+PB的最小值是.

实战演练实战演练1.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,点E是AB上任意一点.若CD=5,则DE的最小值等于()A.2.5 B.4 C.5 D.102.如图,在△ABC中,AC=BC=10,∠ACB=4∠A,BD平分∠ABC交AC于点D,点E,F分别是线段BD,BC上的动点,则CE+EF的最小值是()A.2 B.4 C.5 D.63.如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.2 D.4.54.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C. D.5.如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为()A.1B.C.D.6.如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个动点,连接PD,以PD为边在PD的下方作等边三角形PDQ,连接CQ.则CQ的最小值是()A. B.1 C. D.7.如图,在△ABC中,AB=6,S△ABC=10,点M是∠ABC平分线BD上一动点,点N是BC上一动点,则CM+MN的最小值是.8.如图,在直角△ABC中,∠ABC=90°,AD平分∠BAC,E、F分别为线段AD、AB上的动点,其中AB=8,AC=10,BD=,则BE+EF的最小值为.9.如图,正方形ABCD的边长为2,E是AB的中点,F,G是对角线AC上的两个动点,且FG=,连接EF,BG,则EF+BG的最小值为.10.如图,在菱形ABCD中,A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M的位置变化时,DF长的最大值为.11.如图,边长为8的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是.12.如图,在Rt△ABC中,∠C=90°,AC=BC=8,点P为AB的中点,E为BC上一动点,过C、E、P三点⊙O交AC于F点,连接EF,则EF的最小值为.13.如图,在平面直角坐标系中,点P,A的坐标分别为(1,0),(2,4),点B是y轴上一动点,过点A作AC⊥AB交x轴于点C,点M为线段BC的中点,则PM的最小值为.14.如图,菱形ABCD中,AB=4,∠A=60°,点E为AB上一点,连接DE,以DE为斜边作等腰直角三角形EDF,∠EFD=90°,则BF的取值范围是.15.如图,Rt△ABC中,∠ACB=90°,AC=BC=1,动点M、N在斜边AB上,∠MCN=45°,求MN的最小值.16.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上任意一点.(1)求AM+BM+CM的最小值;(2)求AM+BM的最小值.

17.如图,二次函数的图象与x轴交于O、A两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求点A、点C的坐标;(2)求证:△OCD∽△A′BD;(3)求的最小值.

18.已知抛物线y=ax2+bx+c与x轴交点A(1,0),C(﹣3,0).与y轴交点B(0,3),如图1所示,D为抛物线的顶点.(1)求抛物线的解析式.(2)如图1若R为y轴上的一个动点,连接AR,则RB+AR的最小值为2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论