版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市吉林实验中学高三新高考全真模拟数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,2.某中学有高中生人,初中生人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为()A. B. C. D.3.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且4.已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.5.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.6.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件7.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为()A. B. C. D.9.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A. B. C. D.10.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为()A. B. C. D.11.在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,,公积为,则()A. B. C. D.12.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.请列举用0,1,2,3这4个数字所组成的无重复数字且比210大的所有三位奇数:___________.14.已知函数,则的值为____15.在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为__________.16.函数的图像如图所示,则该函数的最小正周期为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列中,a1=1,其前n项和为,且满足.(1)求数列的通项公式;(2)记,若数列为递增数列,求λ的取值范围.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线.(Ⅰ)求的方程;(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.19.(12分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,,求四边形面积的最大值.20.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.附:(1)相关系数(2),,,.21.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.22.(10分)如图,在矩形中,,,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.2、B【解析】
利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【详解】由题意,,解得.故选:B.【点睛】本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.3、D【解析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.4、B【解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即由累加法可得:即对于任意的,不等式恒成立即令可得且即可得或故选B【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.5、D【解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.6、D【解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.7、C【解析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.8、D【解析】
取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,,,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.9、C【解析】
求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论.【详解】,.若存在极值,则,又.又.故选:C.【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.10、C【解析】
几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.11、B【解析】
计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,,则,,由,得,,,,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.12、A【解析】
准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.二、填空题:本题共4小题,每小题5分,共20分。13、231,321,301,1【解析】
分个位数字是1、3两种情况讨论,即得解【详解】0,1,2,3这4个数字所组成的无重复数字比210大的所有三位奇数有:(1)当个位数字是1时,数字可以是231,321,301;(2)当个位数字是3时数字可以是1.故答案为:231,321,301,1【点睛】本题考查了分类计数法的应用,考查了学生分类讨论,数学运算的能力,属于基础题.14、4【解析】
根据的正负值,代入对应的函数解析式求解即可.【详解】解:.故答案为:.【点睛】本题考查分段函数函数值的求解,是基础题.15、【解析】
根据题意画出几何题,建立空间直角坐标系,写个各个点的坐标,并求得.由空间向量的夹角求法即可求得异面直线与所成角的余弦值.【详解】根据题意画出几何图形,以为原点建立空间直角坐标系:设正方体的棱长为1,则所以所以,所以异面直线与所成角的余弦值为,故答案为:.【点睛】本题考查了异面直线夹角的求法,利用空间向量求异面直线夹角,属于中档题.16、【解析】
根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可.【详解】解:由,得,,,则,,,即,则函数的最小正周期,故答案为:8【点睛】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)项和转换可得,继而得到,可得解;(2)代入可得,由数列为递增数列可得,,令,可证明为递增数列,即,即得解【详解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵数列为递增数列,∴,即.令,即.∴为递增数列,∴,即的取值范围为.【点睛】本题考查了数列综合问题,考查了项和转换,数列的单调性,最值等知识点,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.18、(Ⅰ)(为参数);(Ⅱ)【解析】
(Ⅰ)设点,,则,代入化简得到答案.(Ⅱ)分别计算,的极坐标方程为,,取代入计算得到答案.【详解】(Ⅰ)设点,,,故,故的参数方程为:(为参数).(Ⅱ),故,极坐标方程为:;,故,极坐标方程为:.,故,,故.【点睛】本题考查了参数方程,极坐标方程,弦长,意在考查学生的计算能力和转化能力.19、(1)(2)【解析】
(1)根据正弦定理化简等式可得,即;(2)根据题意,利用余弦定理可得,再表示出,表示出四边形,进而可得最值.【详解】(1),由正弦定理得:在中,,则,即,,即.(2)在中,又,则为等边三角形,又,-当时,四边形的面积取最大值,最大值为.【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基础题.20、(1)0.98;可用线性回归模型拟合.(2)【解析】
(1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;(2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,,三类剂型合格的种类数为,服从二项分布,利用二项分布的期望公式求解即可.【详解】解:(1)由题意可知,,由公式,,∴与的关系可用线性回归模型拟合;(2)药品的每类剂型经过两次检测后合格的概率分别为,,,由题意,,.【点睛】本题考查相关系数的求解,考查二项分布的期望,是中档题.21、(1),;(2).【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.【详解】(1)由得,故直线的普通方程是.由,得,代入公式得,得,故曲线的直角坐标方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024买卖房产合同样本
- 女装批量采购合同
- 医院劳动合同书2024年
- 房屋合同法律效力分析
- 2024年小区物业管理系统合同
- 2024年度XX房地产营销代理合同
- 工程代理加盟居间合同样本
- 旅游客运车辆包车合同
- 2024代理商分销合同探讨与研究
- 2024养猪场荒山租赁合同
- 2024年第九届“鹏程杯”六年级语文邀请赛试卷(复赛)
- 国开2024年《建筑结构#》形考作业1-4答案
- DL-T1475-2015电力安全工器具配置与存放技术要求
- 漏检分析改善措施
- 新制定《公平竞争审查条例》学习课件
- GB/T 44051-2024焊缝无损检测薄壁钢构件相控阵超声检测验收等级
- TD/T 1060-2021 自然资源分等定级通则(正式版)
- 完整加快发展新质生产力课件
- 三位数除以两位数300题-整除-有标准答案
- 办公室装修工程施工方案讲义
- 奇异的仿生学 知到智慧树网课答案
评论
0/150
提交评论