版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省株洲市醴陵二中高三押题信息卷新高考数学试题(三)考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A. B. C. D.2.复数的模为().A. B.1 C.2 D.3.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.24.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题5.在的展开式中,的系数为()A.-120 B.120 C.-15 D.156.函数在的图象大致为()A. B.C. D.7.已知集合,则()A. B.C. D.8.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.9.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则()A.10 B.11 C.12 D.1310.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.311.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.212.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有__________种.14.已知,那么______.15.已知为偶函数,当时,,则__________.16.已知实数,满足,则的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.18.(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.19.(12分)已知函数,.(1)讨论的单调性;(2)若存在两个极值点,,证明:.20.(12分)某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.(1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);(2)如果,并且,试分别求出、、、的值.21.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点.若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.22.(10分)已知数列,,数列满足,n.(1)若,,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立.①当数列为等差数列时,求证:数列,的公差相等;②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由题意可知,随机变量的可能取值有、、、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【详解】由题意可知,随机变量的可能取值有、、、,则,,,.因此,随机变量的数学期望为.故选:A.【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.2、D【解析】
利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:,复数的模为.故选:D.【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.3、B【解析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.4、B【解析】
由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.5、C【解析】
写出展开式的通项公式,令,即,则可求系数.【详解】的展开式的通项公式为,令,即时,系数为.故选C【点睛】本题考查二项式展开的通项公式,属基础题.6、C【解析】
先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【详解】函数,则,所以为奇函数,排除B选项;当时,,所以排除A选项;当时,,排除D选项;综上可知,C为正确选项,故选:C.【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.7、C【解析】
由题意和交集的运算直接求出.【详解】∵集合,∴.故选:C.【点睛】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.8、B【解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.9、D【解析】
利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,,构成等差数列可得即又解得:又所以时,.故选:D【点睛】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.10、B【解析】
过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.11、A【解析】
利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.12、D【解析】
由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养二、填空题:本题共4小题,每小题5分,共20分。13、1344【解析】
分四种情况讨论即可【详解】解:数学排在第一节时有:数学排在第二节时有:数学排在第三节时有:数学排在第四节时有:所以共有1344种故答案为:1344【点睛】考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.14、【解析】
由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.【详解】∵,∴,,∴.故答案为:.【点睛】本小题主要考查诱导公式、同角三角函数的基本关系式,属于基础题.15、【解析】
由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力16、【解析】
画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.【详解】不等式组表示的平面区域如下所示:因为可以理解为点与构成直线的斜率,数形结合可知,当且仅当目标函数过点时,斜率取得最大值,故的最大值为.故答案为:.【点睛】本题考查目标函数为斜率型的规划问题,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)有最大值,最大值为3.【解析】
(Ⅰ)利用正弦定理将角化边,再由余弦定理计算可得;(Ⅱ)由正弦定理可得,则,再根据正弦函数的性质计算可得;【详解】(Ⅰ)由得再由正弦定理得因此,又因为,所以.(Ⅱ)当时,的周长有最大值,且最大值为3,理由如下:由正弦定理得,所以,所以.因为,所以,所以当即时,取到最大值2,所以的周长有最大值,最大值为3.【点睛】本题考查正弦定理、余弦定理解三角形,以及三角函数的性质的应用,属于中档题.18、(1);(2).【解析】
(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2).作出函数的图象,当直线与函数的图象有三个公共点时,方程有三个解,由图可得结果.【详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数的取值范围是.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.19、(1)见解析;(2)见解析【解析】
(1)求得的导函数,对分成两种情况,讨论的单调性.(2)由(1)判断出的取值范围,根据韦达定理求得的关系式,利用差比较法,计算,通过构造函数,利用导数证得,由此证得,进而证得不等式成立.【详解】(1).当时,,此时在上单调递减;当时,由解得或,∵是增函数,∴此时在和单调递减,在单调递增.(2)由(1)知.,,,不妨设,∴,,令,∴,∴在上是减函数,,∴,即.【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.20、(1),最大值公顷;(2)17、25、5、5.【解析】
(1)由余弦定理求出三角形ABC的边长BC,进而可以求出,,由面积公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表达式求出,。【详解】(1)由余弦定理得,,所以,,同理可得又,所以,故在区间上的最大值为,近似值为。(2)由(1)知,,,所以,进而,由知,,,故、、、的值分别是17、25、5、5。【点睛】本题主要考查利用余弦定理解三角形以及同角三角函数平方关系的应用,意在考查学生的数学建模以及数学运算能力。21、(1)(2)定值为0.【解析】
(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1)因为直线过椭圆的右焦点,所以,因为离心率为,所以,(2),设直线,则因此由得,所以,因此即【点睛】本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.22、(1)(2)①见解析②数列不能为等比数列,见解析【解析】
(1)根据数列通项公式的特点,奇数项为等差数列,偶数项为等比数列,选用分组求和的方法进行求解;(2)①设数列的公差为,数列的公差为,当n为奇数时,得出;当n为偶数时,得出,从而可证数列,的公差相等;②利用反证法,先假设可以为等比数列,结合题意得出矛盾,进而得出数列不能为等比数列.【详解】(1)因为,,所以,且,由题意可知,数列是以1为首项,2为公差的等差数列,数列是首项和公比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度民营医院员工安全生产教育与责任合同4篇
- 二零二五年度婴幼儿奶粉进口清关及仓储物流服务合同
- 二零二五年度民法典物权编在遗产继承中的法律咨询合同4篇
- 2025年度个人农业生产经营质押担保贷款合同3篇
- 课题申报参考:面向国家重大战略需求的博士生项目制培养模式研究
- 课题申报参考:马来西亚华人音乐之存续与中华文化认同建构
- 二零二五年度木工行业安全生产责任保险合同
- 2025年度个人与公司租赁合同税费承担协议4篇
- 2025版门禁控制系统研发与定制服务合同4篇
- 2025年度个人股权赠与与受赠合同范本4篇
- JBT 14588-2023 激光加工镜头 (正式版)
- 2024年四川省成都市树德实验中学物理八年级下册期末质量检测试题含解析
- 九型人格与领导力讲义
- 廉洁应征承诺书
- 2023年四川省成都市中考物理试卷真题(含答案)
- 泵车述职报告
- 2024年山西文旅集团招聘笔试参考题库含答案解析
- 恢复中华人民共和国国籍申请表
- 管理期货的趋势跟踪策略 寻找危机阿尔法
- 沥青化学分析试验作业指导书
- 脑出血的护理课件脑出血护理查房PPT
评论
0/150
提交评论