2023-2024学年北师版八年级数学寒假专题基础作业 第5节因式分解1(含答案)_第1页
2023-2024学年北师版八年级数学寒假专题基础作业 第5节因式分解1(含答案)_第2页
2023-2024学年北师版八年级数学寒假专题基础作业 第5节因式分解1(含答案)_第3页
2023-2024学年北师版八年级数学寒假专题基础作业 第5节因式分解1(含答案)_第4页
2023-2024学年北师版八年级数学寒假专题基础作业 第5节因式分解1(含答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

①=2\*GB3②=3\*GB3③=4\*GB3④2.下列多项式中不能用平方差公式分解的是()A.B. C.D.3.下列多项式,不能运用平方差公式分解的是()A. B.C. D.4.知,,为△ABC的三边,且满足.试判断△ABC的形状.5.已,把多项式因式分解.学习任务1.下列各式从左到右,是因式分解的是()A. B.C. D.2.阅读下列材料:如果,那么,则,由此可知:.根据以上材料计算的根为()A. B.C. D.3.若是正整数,且,则数对为______________.4.用完全平方式法对下列各式进行因式分解(1)(2)(3)(4)(5)(6)(7)5.分解因式:(1)(2)6.已知,则代数式=.7.代数式为完全平方式,则m=.8.阅读材料:分解因式:解:原式此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:

(1)分解因式=;=;(2)无论m取何值,代数式总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.第5讲因式分解1(解析版)目标层级图课前检测1.下列等式从左到右的图形,属于因式分解的是()A. B.C.D.【解答】解:A、m(a﹣b)=ma﹣mb,是单项式乘以多项式,故此选项错误;B、2a2+a=a(2a+1),是分解因式,符合题意;C、(x+y)2=x2+2xy+y2,是整式乘法运算,故此选项错误;D、m2+4m+4=m(m+4)+4,不符合因式分解的定义,故此选项错误.故选:B.2.(1)若,求的值.【解答】解:(1)∵x+y=4,xy=3,∴x2y+xy2=xy(x+y)=3×4=12;3.分解因式=.【解答】解:x2(x﹣y)+(y﹣x)=x2(x﹣y)﹣(x﹣y)=(x﹣y)(x2﹣1)=(x﹣y)(x+1)(x﹣1).故答案为:(x﹣y)(x+1)(x﹣1).课中讲解概念定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。分解因式与整式乘法互为逆变形。注意:

(1)分解的结果要以积的形式表示;(2)每个因式必须是整式,且每个因式的次数都必须不高于原来多项式的次数;(3)必须分解到每个多项式因式不能再分解为止2.因式分解结果的要求因式分解结果的标准形式常见错误或不规范模式符合定义,结果一定是乘积的形式不能含有中括号,大括号最后的因式不能再次分解相同因式写成幂的形式括号首项不能为负因式中不含有分式因式中不含无理数单项式因式写在多项式因式前面每个因式第一项系数一般不为分数例1.下列各式从左到右的变形中,是因式分解的为()A.B.C. D.【解答】A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.过关检测1.下列从左到右边的变形,是因式分解的是()A. B.C. D.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、不合因式分解的定义,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、左边=右边,是因式分解,故本选项正确.故选:D.2.下面式子从左边到右边的变形是因式分解的是()A.B.C. D.【解答】解:A、右边不是积的形式,错误;B、是多项式乘法,不是因式分解,错误;C、是平方差公式,x2﹣4=(x+2)(x﹣2),正确;D、结果不是整式的积,错误.故选:C.3.下列各式中从左到右的变形,是因式分解的是()A. B.C. D.【解答】解:A、(a+2)(a﹣2)=a2﹣4,从左到右的变形是整式的乘法运算,不是因式分解,故此选项错误;B、x2+x﹣1=(x﹣1)(x+2)+1,从左到右的变形,不是因式分解,故此选项错误;C、a+ax+ay=a(1+x+y),故此选项错误;D、a2b﹣ab2=ab(a﹣b),从左到右的变形,是因式分解,故此选项正确.故选:D.

提公因式法1、公因式定义:多项式的各项都含有相同的因式,我们把多项式各项都含有相同因式,叫做这个多项式各项的公因式。2、确定公因式的方法:①系数——取多项式各项系数的最大公约数;②字母或多项式因式——取各项都含有的字母或多项式因式的最低次幂3、提公因式法定义:如果一个多项式的各项都含有公因式,可将这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。4、提公因式步骤:①确定多项式中各项的公因式(包括系数、字母、多项式因式)②提出公因式(注意符号)③确定多项式提出公因式后的因式(把原多项式除以公因式所得的商作为另一个因式,写出结果),将提出公因式后的因式合并同类项(注意:如果某一项提出全部后,还剩1)例1.(1)(2)【解答】解:【解答】解:(1)原式=9a2bc(5ab+1﹣6b);(3)(单项式的提公因式)【解答】解:过关检测1.因式分解:=.【解答】解:原式=2a(a﹣2).故答案为:2a(a﹣2).2.把下列各式因式分解(1)(2)【解答】解:.【解答】解:.(3).(4)【解答】解:原式,【解答】解:原式=例2.对下列式子进行因式分解(多项式的提公因式)(1)【解答】解:原式=(a﹣b)4+a(a﹣b)3﹣b(a﹣b)3=(a﹣b)3(a﹣b+a﹣b)=2(a﹣b)4;(2)【解答】解:原式=.过关检测1.把下列各式进行因式分解(1);(2)【解答】解:原式=(x-3)(a+2b)【解答】解:原式=5(x-y)2(x-y+2)(3)(4)【解答】解:原式=2(1-p)2(2q-2qp+1)【解答】解:原式=(x-y)(3m+n)2.已知可分解因式为,其中、均为整数,则.【解答】解:,,,则,,故,故答案为:.公式法1.根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法!2.公式法两种类型:平方差公式法:形如的式子称为完全平方式。用完全平方公式因式分解:需要了解的几种类型:例1. 利用平方差公式进行因式分解:【解答】解:原式=(x﹣y)(a+2)(a﹣2).【解答】解:原式=(7n-m)(7m-n)【解答】解:原式=(15b-4a)(8a-9b)例2.用完全平方式法对下列各式进行因式分解(1)(2)【解答】解:=14(3a+4b)2(3)(4)【解答】解:=3m22n−12(5)(6)【解答】解:=(x−y)2【解答】解:=过关检测1.因式分解下列各式【解答】解:a2(x﹣y)+4(y﹣x)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).=2\*GB3②【解答】解:(a2+b2﹣c2)2﹣4a2b2=(a2+b2﹣c2﹣2ab)(a2+b2﹣c2+2ab)=[(a﹣b)2﹣c2][(a+b)2﹣c2]=(a﹣b+c)(a﹣b﹣c)(a+b﹣c)(a+b+c).=3\*GB3③【解答】解:ax2﹣9a=a(x2﹣9)=a(x+3)(x﹣3)=4\*GB3④【解答】解:(m﹣n)2﹣9(m+n)2=[(m﹣n)+3(m+n)][(m﹣n)﹣3(m+n)]=[m﹣n+3m+3n][m﹣n﹣3m﹣3n]=(4m+2n)(﹣2m﹣4n)=﹣4(2m+n)(m+2n).2.下列多项式中不能用平方差公式分解的是()A.B. C.D.【解答】解:A、符合平方差公式的特点;B、两平方项的符号相同,不符和平方差公式结构特点;C、符合平方差公式的特点;D、符合平方差公式的特点.故选B.3.下列多项式,不能运用平方差公式分解的是()A. B.C. D.【解答】解:不能运用平方差公式分解的是﹣x2﹣y2,故选:B.4.已知a,b,c为△ABC的三边,且满足.试判断△ABC的形状.【解答】解:=(a−5)a=5;b=12,c=13为直角三角形5.已,把多项式因式分解.【解答】解:=(a+4)a=-4;b=1所以,原式=(x+2y)2-1=(x+2y-1)(x+2y+1)6.若是一个完全平方式,则k=.【解答】解:∵4a4﹣ka2b+25b2是一个完全平方式,∴4a4﹣ka2b+25b2=(2a2±5b)2,=4a4±20a2b+25b2.∴k=±20,故答案为:±20.学习任务1.下列各式从左到右,是因式分解的是()A. B.C. D.【解答】解:A、是多项式乘法,不是因式分解,故本选项错误;B、结果不是积的形式,故本选项错误;C、不是对多项式变形,故本选项错误;D、运用完全平方公式分解x2﹣4x+4=(x﹣2)2,正确.故选D.2.阅读下列材料:如果,那么,则,由此可知:.根据以上材料计算的根为()A. B.C. D.【解答】解:x2﹣6x﹣16=0,(x﹣3)2﹣52=0,(x﹣3+5)(x﹣3﹣5)=0,解得:x1=3﹣5=﹣2,x2=3+5=8.故选:A.3.若m,n是正整数,且,则数对m,n为【解答】解:当m=7时,n=2m=23时,n=224.用完全平方式法对下列各式进行因式分解(1)(2)【解答】解:=(x+7)2(3)(4)【解答】解:=(4−x+y)2【解答】解:=(5)【解答】解:=((6)【解答】解:=(2x+2y−5)(7)【解答】解:=(=(x+2)45.分解因式:(1)(2)【解答】解:(1)a2(a﹣b)2﹣b2(a﹣b)2=(a﹣b)2(a2﹣b2)=(a﹣b)2(a+b)(a﹣b)=(a﹣b)3(a+b);(2)(a2+b2﹣c2)2﹣4a2b2=(a2+b2﹣c2﹣2ab)(a2+b2﹣c2+2ab)=[(a﹣b)2﹣c2][(a+b)2﹣c2]=(a﹣b+c)(a﹣b﹣c)(a+b﹣c)(a+b+c).6.已知,则代数式=.【解答】解:∵ab=2,a﹣b=3,∴a3b﹣a2b2+=ab(a2﹣2ab+b2)=ab(a﹣b)2=×2×32=×2×9=9,故答案为:9.7.代数式为完全平方式,则m=.【解答】解:∵x2+(m﹣1)xy+y2,∴(m﹣1)xy=±2•x•y,则m﹣1=±2,解得:m=﹣1或3.故答案为:﹣1或3.

8.阅读材料:分解因式:解:原式此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式=;=;(2)无论m取何值,代数式总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.【解答】解:(1)x2﹣2x﹣3,=x2﹣2x+1﹣1﹣3,=(x﹣1)2﹣4,=(x﹣1+2)(x﹣1﹣2),=(x﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论