版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省淮安市清江中学等四校数学高一下期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列四个函数中,以为最小正周期,且在区间上为减函数的是()A. B. C. D.3.数列1,3,6,10,…的一个通项公式是()A. B.C. D.4.已知是偶函数,且时.若时,的最大值为,最小值为,则()A.2 B.1 C.3 D.5.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则和的值分别为A.5,5 B.3,5 C.3,7 D.5,76.已知内角,,所对的边分别为,,且满足,则=()A. B. C. D.7.各项均为实数的等比数列{an}前n项之和记为,若,,则等于A.150 B.-200 C.150或-200 D.-50或4008.若关于x,y的方程组无解,则()A. B. C.2 D.9.光线自点M(2,3)射到N(1,0)后被x轴反射,则反射光线所在的直线方程为()A. B.C. D.10.函数的图象如图所示,为了得到的图象,则只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.12.观察下列等式:(1);(2);(3);(4),……请你根据给定等式的共同特征,并接着写出一个具有这个共同特征的等式(要求与已知等式不重复),这个等式可以是__________________.(答案不唯一)13.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.14.某几何体是由一个正方体去掉一个三棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积是___15.已知,,是与的等比中项,则最小值为_________.16.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.18.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(I)求应从小学、中学、大学中分别抽取的学校数目.(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率.19.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值以及对应的的值.20.为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:(Ⅰ)图中m的值;(II)估计全年级本次考试的平均分;(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.21.在中,内角A,B,C所对的边分别为a,b,c;已知.(1)求角B的大小;(2)若外接圆的半径为2,求面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由,即可判断.【详解】,则与的终边相同,则角的终边落在第三象限故选:C【点睛】本题主要考查了判断角的终边所在象限,属于基础题.2、B【解析】
由条件利用三角函数的周期性和单调性,判断各个选项是否正确,即可求得答案.【详解】对于A,因为的周期为,故A错误;对于B,因为|以为最小正周期,且在区间上为减函数,故B正确;对于C,因为的周期为,故C错误;对于D,因为区间上为增函数,故D错误.故选:B.【点睛】本题主要考查了判断三角函数的周期和在指定区间上的单调性,解题关键是掌握三角函数的基础知识和函数图象,考查了分析能力,属于基础题.3、C【解析】
试题分析:可采用排除法,令和,验证选项,只有,使得,故选C.考点:数列的通项公式.4、B【解析】
根据函数的对称性得到原题转化为直接求的最大和最小值即可.【详解】因为函数是偶函数,函数图像关于y轴对称,故得到时,的最大值和最小值,与时的最大值和最小值是相同的,故直接求的最大和最小值即可;根据对勾函数的单调性得到函数的最小值为,,故最大值为,此时故答案为:B.【点睛】这个题目考查了函数的奇偶性和单调性的应用,属于基础题。对于函数的奇偶性,主要是体现函数的对称性,这样可以根据对称性得到函数在对称区间上的函数值的关系,使得问题简化.5、B【解析】
利用茎叶图、中位数、平均数的性质直接求解.【详解】由茎叶图得:∵甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,∴65=60+y,解得y=5,∵平均值也相等,∴,解得x=1.故选B.【点睛】本题考查实数值的求法,考查茎叶图、中位数、平均数的性质等基础知识,考查运算求解能力,是基础题.6、A【解析】
利用正弦定理以及和与差的正弦公式可得答案;【详解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根据正弦定理:可得sinA•tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴•tanA=1;∴tanA,那么A;故选A.【点睛】本题考查三角形的正弦定理,,内角和定理以及和与差正弦公式的运用,考查运算能力,属于基础题.7、A【解析】
根据等比数列的前n项和公式化简S10=10,S30=70,分别求得关于q的两个关系式,可求得公比q的10次方的值,再利用前n项和公式计算S40即可.【详解】因为{an}是等比数列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案选A.【点睛】此题考查学生灵活运用等比数列的前n项和的公式化简求值,是一道综合题,有一定的运算技巧,需学生在练习中慢慢培养.8、A【解析】
由题可知直线与平行,再根据平行公式求解即可.【详解】由题,直线与平行,故.故选:A【点睛】本题主要考查了二元一次方程组与直线间的位置关系,属于基础题.9、B【解析】试题分析:点关于轴的对称点,则反射光线即在直线上,由,∴,故选B.考点:直线方程的几种形式.10、D【解析】
先根据图象确定A的值,进而根据三角函数结果的点求出求与的值,确定函数的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可得到结果.【详解】由题意,函数的部分图象,可得,即,所以,再根据五点法作图,可得,求得,故.函数的图象向左平移个单位,可得的图象,则只要将的图象向右平移个单位长度可得的图象,故选:D.【点睛】本题主要考查了三角函数的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.12、【解析】
观察式子特点可知,分子上两余弦的角的和是,分母上两个正弦的角的和是,据此规律即可写出式子【详解】观察式子规律可总结出一般规律:,可赋值,得故答案为:【点睛】本题考查归纳推理能力,能找出余角关系和补角关系是解题的关键,属于基础题13、【解析】
先结合求出,再由求解即可【详解】由,则故答案为:【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题14、6【解析】
先作出几何体图形,再根据几何体的体积等于正方体的体积减去三棱柱的体积计算.【详解】几何体如图所示:去掉的三棱柱的高为2,底面面积是正方体底面积的,所以三棱柱的体积:所以几何体的体积:【点睛】本题考查三视图与几何体的体积.关键是作出几何体的图形,方法:先作出正方体的图形,再根据三视图“切”去多余部分.15、1【解析】
根据等比中项定义得出的关系,然后用“1”的代换转化为可用基本不等式求最小值.【详解】由题意,所以,所以,当且仅当,即时等号成立.所以最小值为1.故答案为:1.【点睛】本题考查等比中项的定义,考查用基本不等式求最值.解题关键是用“1”的代换找到定值,从而可用基本不等式求最值.16、【解析】
试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】试题分析:(1)利用升幂公式及两角和与差的余弦公式化简已知等式,可得,从而得,注意两解;(2)由,得,利用正弦定理得,从而可变为,利用三角形的内角和把此式化为一个角的函数,再由两角和与差的正弦公式化为一个三角函数形式,由的范围()结合正弦函数性质可得取值范围.试题解析:(1)由已知,得,化简得,故或;(2)∵,∴,由正弦定理,得,故,∵,所以,,∴.18、(1)3,2,1(2)【解析】(1)从小学、中学、大学中分别抽取的学校数目为3、2、1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种.所以P(B)=315=119、(1);(2)当时,取得最小值;当时,取得最大值.【解析】
(1)利用降幂扩角公式先化简三角函数为标准型,再求解最小正周期;(2)由定义域,先求的范围,再求值域.【详解】(1)所以的最小正周期为.(2)由,得,当,即时,取得最小值,当,即时,取得最大值.【点睛】本题考查利用三角恒等变换化简三角函数解析式,之后求解三角函数的性质,本题中包括最小正周期以及函数的最值,属综合基础题.20、(I)0.045;(II)75;(III)0.7【解析】
(Ⅰ)根据频率之和为1,结合题中数据,即可求出结果;(II)每组的中间值乘以该组频率,再求和,即可得出结果;(III)用列举法列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求的概率.【详解】(Ⅰ)由题意可得:(Ⅱ)各组的频率分别为0.05,0.25,0.45,0.15,0.1,所以可估计全年级的平均分为;(Ⅲ)分数落在[80,90)的人数有3人,设为a,b,c,落在[90,100的人数有2人,设为A、B,则从中随机抽取两名的结果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10种,其中至少有一人不低于90分的有7种,故概率为0.7.【点睛】本题主要考查由频率分布直方图求参数,以及求均值的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论